
Build Order Optimization in StarCraft
David Churchill and Michael Buro

Daniel Federau

Universität Basel

19. November 2015



Introduction State Space Search Algorithm Experiments

Motivation

planning can be used in real-time strategy games (RTS), e.g.

pathfinding of units

strategical planning

tactical assault planning

in this paper: finding an optimal build order for the game
StarCraft

2 / 21



Introduction State Space Search Algorithm Experiments

StarCraft

created by Blizzard Entertainment in 1998

one of the most popular RTS-games

the goal is to destroy all enemy buildings

the player gathers resources, builds production buildings and
combat units

consumable resources: minerals, gas and supply

building dependencies are saved in tech tree

3 / 21



Introduction State Space Search Algorithm Experiments

StarCraft

4 / 21



Introduction State Space Search Algorithm Experiments

Build Order Optimization

build order is the order in which units/buildings are built

optimal build order reaches a given goal as fast as possible
(minimize makespan)

goal: build number of units/buildings/resources

5 / 21



Introduction State Space Search Algorithm Experiments

Overview

definition of the search space is needed for search

every unit, building and consumable is considered a resource

every action has preconditions and produces resources

6 / 21



Introduction State Space Search Algorithm Experiments

Action - Definition

action a = (δ, r , b, c , p)

δ: duration measured in frames

r : required resources, need to be present in order to execute
action

b: borrowed resources, will be available again after action
finishes (e.g. production buildings)

c : consumed resources, become unavailable after executing
action (e.g. minerals, gas)

p: produced resources after action finishes

7 / 21



Introduction State Space Search Algorithm Experiments

Action - Example

action a = ”Build Terran unit
Firebat”

δ: 576 frames (24 seconds)

r = {Academy}

b = {Barracks}

c = {50 Minerals, 25 Gas, 1
Supply}

p = {1 Firebat}

8 / 21



Introduction State Space Search Algorithm Experiments

States

state S = (t,R,P, I )

t: current game time

R: vector with every resource available

P: actions currently in progress

I : worker income data (10 gather minerals, 3 gather gas) →
used for abstraction

9 / 21



Introduction State Space Search Algorithm Experiments

Abstractions

used to reduce search space and increase the performance of the
planner:

1. fixed income rate per worker per frame (0.045 minerals, 0.07
gas)

2. assign 3 workers to a refinery when it finishes

3. add 4 seconds to the game time whenever a building is
constructed

10 / 21



Introduction State Space Search Algorithm Experiments

Action Legality

difference between executable and legal actions

an action a is legal in state S if:

1. required or borrowed resources are currently available,
borrowed or under construction

2. consumable resources are currently available or will be in the
future without executing an action

11 / 21



Introduction State Space Search Algorithm Experiments

State Transition

3 functions for the definition of the transition function for a given
state S :

S ′ ←Sim(S , δ): simulates progression from S during δ without
actions → increases resource count and finishes actions

δ ←When(S ,R): returns duration δ when resources R are
available

S ′ ←Do(S , a): execute action a in state S if resources are
available (does not increase time of S)

transition function T : S ′ = Do(Sim(S ,When(S , a)), a)

12 / 21



Introduction State Space Search Algorithm Experiments

Search Algorithm

depth-first branch and bound algorithm

recursive algorithm

possible to stop at any time to return best solution so far

heuristic functions for pruning nodes

search algorithm is optimal if heuristic is admissible

13 / 21



Introduction State Space Search Algorithm Experiments

High-level Algorithm

DFBB(S)

return best solution so far if time runs out

update bound whenever a better solution is found

expand children:

heuristic evaluation of children

prune child if cost so far and heuristic is bigger than bound

14 / 21



Introduction State Space Search Algorithm Experiments

Heuristics

maximum of the two heuristics is used for lower bound:

LandmarkLowerBound(S ,G )

uses landmarks (vital actions for achieving a goal)

landmarks can be obtained from tech tree

sum of duration of all non-concurrent landmark actions

ResourceGoalBound(S ,G )

sum of all consumed resources needed to build all
units/buildings in goal G

duration that is needed to gather this amount with current
worker count

15 / 21



Introduction State Space Search Algorithm Experiments

Macro Actions

manually implemented

double existing actions

every action has a repetition value K

defines how often an action has to be executed in a row

decreases depth of search but produces non-optimal solutions

16 / 21



Introduction State Space Search Algorithm Experiments

Comparison

produced build orders were compared to ones from
professional players

build orders were extracted manually from replays

save sequence of all actions that produce resources

every 500 frames from beginning of the game

until 10000 frames (7 min) or until one of the units dies

goals were extracted with GetGoal(B, ts , te)

build order B, start time ts , end time te

every resource produced by actions issued between ts and te

17 / 21



Introduction State Space Search Algorithm Experiments

Results: CPU-Usage

18 / 21



Introduction State Space Search Algorithm Experiments

Results: Comparison with professional replays

19 / 21



Introduction State Space Search Algorithm Experiments

Conclusion

possible to compute build orders in real time

results are close to professional build orders

abstractions greatly reduce search time but can lead to
non-optimal solution

20 / 21



Introduction State Space Search Algorithm Experiments

Discussion

comparison in favour of the planner:

professional player also has to control units

player can change his goal during his build order

planner can not detect unit loss

21 / 21



Introduction State Space Search Algorithm Experiments

Image Sources

Frame 4: http://s3.vidimg02.popscreen.com/original/
31/NTQ2MDU5MjUz_o_

lets-play-starcraft-brood-war---03-legacy-of-the-xelnaga.

jpg

Frame 6: http://www.teamliquid.net/forum/
brood-war/226892-techtree-pictures

21 / 21

http://s3.vidimg02.popscreen.com/original/31/NTQ2MDU5MjUz_o_lets-play-starcraft-brood-war---03-legacy-of-the-xelnaga.jpg
http://s3.vidimg02.popscreen.com/original/31/NTQ2MDU5MjUz_o_lets-play-starcraft-brood-war---03-legacy-of-the-xelnaga.jpg
http://s3.vidimg02.popscreen.com/original/31/NTQ2MDU5MjUz_o_lets-play-starcraft-brood-war---03-legacy-of-the-xelnaga.jpg
http://s3.vidimg02.popscreen.com/original/31/NTQ2MDU5MjUz_o_lets-play-starcraft-brood-war---03-legacy-of-the-xelnaga.jpg
http://www.teamliquid.net/forum/brood-war/226892-techtree-pictures
http://www.teamliquid.net/forum/brood-war/226892-techtree-pictures


Introduction State Space Search Algorithm Experiments

Search Algorithm

Algorithm 1 Depth-First Branch & Bound
Require: goal G , state S, time limit t, bound b
1: procedure DFBB(S)
2: if TimeElapsed ≥ t then
3: return
4: end if
5: if S safisfies G then
6: b ← min(b,St) . update bound
7: bestSolution ← solutionPath(S)
8: else
9: while S has more children do
10: S ′ ← S.nextChild
11: S ′.parent ← S
12: h← eval(S ′) . heuristic evaluation
13: if S ′

t + h < b then
14: DFBB(S ′)
15: end if
16: end while
17: end if
18: end procedure

21 / 21



Introduction State Space Search Algorithm Experiments

Compare Algorithm

Require: BuildOrder B, time limit t, Increment Time i
procedure CompareBuildOrder(B, t, i)

S ← Initial StarCraft State
SearchPlan ← DFBB(S ,GetGoal(B, 0,∞), t)
if SearchPlan.timeElapsed ≤ t then

return MakeSpan(SearchPlan)/MakeSpan(B)
else

inc ← i
SearchPlan ← ∅
while inc ≤ MakeSpan(B) do

IncPlan ← DFBB(S,GetGoal(B,inc−i ,inc),t)
if IncPlan.timeElapsed ≥ t then

return failure
else

SearchPlan.append(IncPlan)
S ← S .execute(IncPlan)
inc ← inc +i

end if
end while
return MakeSpan(SearchPlan)/MakeSpan(B)

end if
end procedure

21 / 21


	Introduction
	State Space
	Search Algorithm
	Experiments

