Seminar: Search and Optimization
2. Basic Search Algorithms & Project Organization

Martin Wehrle

Universitat Basel

September 24, 2015

Today's Session

Topics for today
@ Introduction to basic search algorithms
@ Topic assignment for the seminar

@ Organization of the project

Basic Search Algorithms

9000000000000 0

Basic Search Algorithms

Basic Search Algorithms
0®000000000000

Search Algorithms

Search algorithms and state spaces

@ Search algorithms work in state spaces.

@ State spaces consist of states and state transitions, as well as
an initial state and (potentially many) goal states.

@ Objective of search algorithms: find a path from the initial to
a goal state in the state space.

Basic Search Algorithms
00®00000000000

Search Algorithms

Working principle of search algorithms

@ Start with initial state. In every step, expand a state through
generating its successors.

@ Open List: Set of states that are candidates for expansion

@ Closed List: Set of states that are already expanded

Basic Search Algorithms
000®0000000000

Blind Search Algorithms

Blind (or uninformed) search algorithms

Use no additional information about the state space
beyond the problem definition. In the following:

@ Breadth-first search

@ Uniform-cost search

In contrast to
heuristic search algorithms (~+ introduced later)

Basic Search Algorithms
0000®000000000

Breadth-First Search

Breadth-first search
States are expanded in the order they have been generated (FIFO).

>®

Basic Search Algorithms
0000®000000000

Breadth-First Search

Breadth-first search
States are expanded in the order they have been generated (FIFO).

>®

Basic Search Algorithms
0000®000000000

Breadth-First Search

Breadth-first search
States are expanded in the order they have been generated (FIFO).

>®

© ©®

Basic Search Algorithms
0000®000000000

Breadth-First Search

Breadth-first search
States are expanded in the order they have been generated (FIFO).

" »/.\o
DE) © DO
© ® PO ® ® ©

Basic Search Algorithms
0000®000000000

Breadth-First Search

Breadth-first search
States are expanded in the order they have been generated (FIFO).

" »/.\o
DE) © DO
© ©® PO ® ® 6

@ searches the state space layer by layer

@ always finds a solution if a solution exists
@ always finds a shallowest goal state first

@ optimal in case all actions have the same costs

Basic Search Algorithms Semi Assignment
00000e00000000

Breadth-First Search: Pseudo-Code

Breadth-first search: pseudo-code

Sp := initial state
if is-goal(sp):
return extract-solution(sp)
open := new FIFO queue with sy as the only element
closed := ()

loop do
if open.empty():
return none
s = open.pop-front()
closed.insert(s)
for each successor state s’ of s:
if s ¢ open U closed.
if is-goal(s’):
return extract-solution(s’)
open.push-back(s’)

Basic Search Algorithms
000000e0000000

Uniform-Cost Search

Uniform-cost search

@ Breadth-first search not optimal if actions have different costs
@ Solution: always expand states with minimal path costs g(s)

@ Implementation: priority queue as open list

~~ uniform-cost search (also known as Dijkstra’s algorithm)

Basic Search Algorithms
0000000e000000

Uniform-Cost Search

Uniform-cost search

Sp := initial state
open := new priority queue, ordered by g
open.insert(sp)
closed :=)
while not open.empty():
s = open.pop-min()
if s ¢ closed:
closed := closed U {s}
if is-goal(s):
return extract-solution(s)
for each successor state s’ of s:
open.insert(s’)
return unsolvable)

Basic Search Algorithms
0000000080000

Heuristic Search Algorithms

Drawback of blind search algorithms: Limited scalability

@ Find criteria to estimate which states are “good” and which
states are “bad” ~~ prefer good states

State evaluation

@ Use a heuristic function h(s) to estimate the quality of states s

@ Based on h, compute evaluation function f

o Evaluate every state s with f (i.e., compute f(s))

@ Expand state with minimal f value next

~ prominent example: A* search algorithm

Basic Search Algorithms
0000000008000

A* Search Algorithm

A* search algorithm
e Evaluation function f(s) := g(s) + h(s)
@ Balance path costs g(s) and estimated proximity h(s) to goal

o Intuition: f(s) estimates costs of cheapest solution from initial
state through s to goal

Basic Search Algorithms i Assignment
0000000000800

A* Search: Pseudo-Code

A* search (no re-opening)

Sp := initial state
open := new priority queue, ordered by
if h(sp) < oo:
open.insert(sp)
closed := ()
while not open.empty():
s = open.pop-min()
if s ¢ closed:
closed := closed U {s}
if is-goal(s):
return extract-solution(s)
for each successor state s’ of s:
if h(s’) < oo:
open.insert(s’)

return unsolvable

Basic Search Algorithms
00000000000 e00

A* Search Algorithm

Most important property

@ A* is optimal if the applied heuristic is admissible.

Basic Search Algorithms
0000000000080

Example: A* for Route Planning

Example heuristic: straight-line distance to Bucharest

Arad 366

[]Oradea Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

Fagaras 176

Arad} Giurgiu 77
Hirsova 151

lasi 226

us Lugoj 244
Mehadia 241

Neamt 234

Oradea 380

Pitesti 100

X Rimnicu Vilcea 193

[JHirsova Sibiu 253

86 Timisoara 329

Urziceni 80

Dobreta [Vaslui 199

Eforie Zerind 374

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(a) Theinitial state

366=0+366

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad CArad >
>CSibiu >

393=140+253 447=118+329 449=75+374

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(a) Theinitial state
366=0+366
(b) After expanding Arad CArad >
> 3
393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=T5+374

646=280+366 415=239+176 671=291+380 413=220+193

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=T5+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea CArad D>

449=T75+374

526=366+160 417=317+100 553=300+253

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

Basic Search Algorithms
0000000000000e

Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

447=118+329 449=T75+374

591=338+253 450=450+0 526=366+160,

418=418+0 615=455+160 607=414+193

Seminar Topic Assignment

Seminar Topic Assignment
0®00000

Seminar Schedule

@ 13 registered participants

@ Every participant has been assigned a topic marked with Yes

Seminar Topic Assignment
00®0000

Seminar Schedule

17.09.
24.09.
01.10.
08.10.
15.10.
22.10.
29.10.
05.11.
12.11.
19.11.
26.11.
03.12.
10.12.
17.12.

Organization, schedule & seminar topics
Basic search algorithms & project organization
no meeting

no meeting

Viacheslav Sharunov

Andreas Thiiring + project milestone 1
Samuel Bader + Ziba Tavassoli

Dorde Relic + Marko Obradovic

no meeting

Daniel Federau + project milestone 2
Oleksandr Dombrovskyi + Kadir Ozgiir
Maurus D3hler + Mirko Riesterer
Patrick Buder

Wrap-up and final project presentation

Seminar Topic Assignment
0008000

Topic Assignment

Pathfinding

@ 15.10.: Near Optimal Hierarchical Path-Finding
Viacheslav Sharunov (supervisor: Jendrik Seipp)

@ 22.10.: Subgoal Graphs for Fast Optimal Pathfinding
Andreas Thiiring (supervisor: Martin Wehrle)

@ 29.10.: Improved heuristics for optimal path-finding on game maps
Samuel Bader (supervisor: Martin Wehrle)

@ 29.10.: TRANSIT Routing on Video Game Maps
Ziba Tavassoli (supervisor: Gabi Réger)

Seminar Topic Assignment
0000®00

Topic Assignment

Real-time strategy games

@ 5.11.: UCT for tactical assault planning in Real-Time Strategy Games
Dorde Relic (supervisor: Silvan Sievers)

@ 5.11.: Game-Tree Search over High-Level Game States in RTS Games
Marko Obradovic (supervisor: Manuel Heusner)

@ 19.11.: Build order optimization in StarCraft
Daniel Federau (supervisor: Silvan Sievers)

Seminar Topic Assignment
000000

Topic Assignment

Content generation & playing games

@ 26.11.: Procedural Content Generation
Oleksandr Dombrovskyi (supervisor: Florian Pommerening)

@ 26.11.: Techniques for Al-Driven Experience Management in Interactive
Narratives
Kadir Ozgiir (supervisor: Florian Pommerening)

@ 3.12.: Towards Automatic Personalized Content Generation for Platform
Games
Maurus Dahler (supervisor: Salomé Simon)

@ 3.12.: Answer Set Programming for Procedural Content Generation: A
Design Space Approach
Mirko Riesterer (supervisor: Salomé Simon)

@ 10.12.: Learning to Win by Reading Manuals in a Monte-Carlo Framework
Patrick Buder (supervisor: Thomas Keller)

<

Seminar Topic Assignment
000000e

Organization: Update

Update on seminar organization

@ Due to the large number of seminar talks, everyone is only
supposed to read one paper per session (instead of all papers).

@ The paper to read is announced one week in advance (by mail)

o IATEX template for seminar papers will be available on website

Project Organization

90000000

Project Organization

Project Organization
0®000000

Project Organization

Project topic
@ Grid-based pathfinding competition

o Implementation of pathfinding algorithms on grids

Programming framework

@ API based on the Grid-Based Path Planning Competition
(http://movingai.com/GPPC/)

@ Provides infrastructure (like parsing, basic search algorithm)
for implementations of pathfinding algorithms

o Adapted infrastructure for project hosted at bitbucket.org
@ Programming language: C++

http://movingai.com/GPPC/
bitbucket.org

Topic Assignment Project Organization
S 00®00000

Project Organization

@ “Real-world” game maps (Dragon Age, Starcraft, ...)
@ Encoding of maps containing obstacles (trees, water, ...)

@ Benchmark set publicly available at
http://www.movingai.com/benchmarks/

o File format described at
http://www.movingai.com/benchmarks/formats.html

Benchmark format

Benchmarks consist of two files

@ .map: encoding of the map to search on
@ .map.scen: the scenario (e.g., start and goal locations)

http://www.movingai.com/benchmarks/
http://www.movingai.com/benchmarks/formats.html

Assignment Project Organization
000®0000

Project Organization

Organization

@ Teams of at most 2 persons
@ No fixed supervisor

o If you have questions or want to meet: contact us directly

Workflow

© Create account at bitbucket.org and tell us your name

@ We will grant access to our repo on project infrastructure

© Project work is done on (forked) bitbucket repository

For all project milestones
e Out of existing files, changes allowed only to Entry.h/cpp

bitbucket.org

Project Organization
00008000

Project Organization

@ Familiarize yourself with APl and benchmark format
@ Proof-of-concept implementation of uniform-cost search
@ Deadline: October 22

Performance target for milestone 1
Solve AcrossTheCape with uniform-cost search in < 1 minute.

Project Organization
00000®00

Project Organization

@ Implementation of at least one additional optimal algorithm

@ Deadline: November 19

Project Organization
00000080

Project Organization

@ Open (also suboptimal algorithms)
@ In particular: Optimize for efficiency

@ Deadline: December 17

Project Organization
0000000e

Project Organization

@ Performance (time, solution quality) on benchmark selection
@ Quality of code
@ Milestone presentations

	Basic Search Algorithms
	Seminar Topic Assignment
	Project Organization

