Seminar: Search and Optimization Directional Consistency

Gabi Röger

Universität Basel

November 6, 2014

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Arc-consistency

Directional Path-consistency

Adaptive Consistency

Summary 00

Example

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Assume we search with variable order x_1, x_2, x_3, x_4

Backtrack-free search

Directional .	Arc-consistency
0000000	000

Adaptive Consistency

Summary 00

Directional	Arc-consistency
0000000	0000

Adaptive Consistency

Summary 00

Assume we search with variable order x_4, x_2, x_1, x_3

Not necessarily backtrack-free search

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional arc-consistency: Definition

Definition (Directional arc-consistency)

A network is directional arc-consistent relative to variable order $d = (x_1, \ldots, x_n)$ iff every variable x_i is arc-consistent relative to every variable x_j such that $i \leq j$.

Adaptive Consistency

Summary 00

Directional Arc-consistency: Function DAC

function DAC:

for i = n, ..., 1: for each j < i such that $R_{ji} \in \mathcal{R}$: $D_j \leftarrow D_j \cap \pi_j(R_{ji} \bowtie D_i)$ (remove values from D_j that don't have a partner in D_i)

Input: Constraint network $\mathcal{R} = (X, D, C)$ with variable ordering $d = (x_1, \dots, x_n)$

Effect: Enforces directional arc-consistency along *d*.

Time complexity: $O(ek^2)$ with *e* binary constraints and maximal domain size *k*.

Adaptive Consistency

Summary 00

Directional Arc-consistency: Questions

- How does directional arc-consistency relate to full arc-consistency?
- Is there a criterion when directional arc-consistency leads to backtrack-free search?
- Can we find a suitable variable ordering?

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional AC vs. Full AC

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional AC vs. Full AC

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional AC vs. Full AC

Enforcing full AC eliminates everything directional AC does ... and more

Adaptive Consistency

Width of a Graph

Definition (Width of a graph)

Let G = (V, E) be an undirected graph and $d = (v_1, \ldots, v_n)$ be an ordering of its the nodes.

- The parents of a node v are its neighbours that precede it in the ordering.
- The width of a node is the number of its parents.
- The width of the ordering is the maximum width over all nodes.

The width of graph G is the minimum width over all orderings.

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of a graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of a graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of a graph: Example

A,B,C,D,E,F:

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of Graph: Algorithm

function MIN-WIDTH:

```
d \leftarrow \text{ array of size } |V|

for i = n, \dots, 1:

r \leftarrow a \text{ node in } G \text{ with smallest degree}

d[i] \leftarrow r

Remove all adjacent edges of r from E

Remove r from V
```

Input: Graph G = (V, E)

Effect: *d* contains minimum width ordering of nodes.

Adaptive Consistency

Summary 00

Width of Graph and Directional Arc-Consistency

Theorem

A graph is a tree iff it has width 1.

Definition

A constraint network is backtrack-free relative to a given ordering (x_1, \ldots, x_n) if for every i < n, every partial solutions of (x_1, \ldots, x_i) can be consistently extended to include x_{i+1}

Theorem

Let d be a width-1 ordering of a constraint tree T. If T is directional arc-consistent relative to d then the network is backtrack-free along d.

Adaptive Consistency

Summary 00

Application: Algorithm for Trees

function TREE-SOLVING:

Generate width-1 ordering (x_1, \ldots, x_n) for \mathcal{R} along a rooted tree. Let $x_{p(i)}$ denote the parent of x_i in the rooted tree. for $i = n, \ldots, 1$: $D_{p(i)} \leftarrow D_{p(i)} \cap \pi_{p(i)}(R_{p(i)i} \bowtie D_i)$ if $D_{p(i)} = \emptyset$: exit (inconsistent network) Extract solution with (backtrack-free) search.

Input: Constraint network $\mathcal{R} = (X, D, C)$ Output: Solution (or inconsistent network). Time complexity: $O(nk^2)$ with *n* variables and maximal domain size *k*.

Directional Path-consistency •0000000 Adaptive Consistency

Directional Path-consistency

Adaptive Consistency

Summary 00

(Strong) directional path-consistency: Function DPC

function DPC:

 $E' \leftarrow E$ for k = n, ..., 1: for each i < k such that $(x_i, x_k) \in E'$: $D_i \leftarrow D_i \cap \pi_i(R_{ik} \bowtie D_k)$ for each i, j < k such that $(x_i, x_k), (x_j, x_k) \in E'$: $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})$ $E' \leftarrow E' \cup (x_i, x_j)$

Input: Constraint network $\mathcal{R} = (X, D, C)$ with constraint graph G = (V, E) and variable ordering $d = (x_1, \dots, x_n)$ Effect: Enforces directional arc- and path-consistency along d. Time complexity: $O(n^3k^3)$ with n variables and maximal domain size k.

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency

Adaptive Consistency

Summary 00

Directional Path-consistency: Questions

- Is there a criterion when (strong) directional path-consistency leads to backtrack-free search?
- Can we find a suitable variable ordering?

Adaptive Consistency

Summary 00

Directional Path-consistency: Questions

- Is there a criterion when (strong) directional path-consistency leads to backtrack-free search?
- Can we find a suitable variable ordering?
- Directional path-consistency can change the constraint graph.
- ▶ Width of contraint graph no longer sufficient.

Adaptive Consistency

Summary 00

Directional Path-consistency: Questions

- Is there a criterion when (strong) directional path-consistency leads to backtrack-free search?
- Can we find a suitable variable ordering?
- Directional path-consistency can change the constraint graph.
- ▶ Width of contraint graph no longer sufficient.
- ► Use induced width instead.

Adaptive Consistency

Summary 00

Induced Width of a Graph

Definition (Induced width of a graph)

Let G = (V, E) be an undirected graph and $d = (v_1, \ldots, v_n)$ be an ordering of its the nodes.

- Obtain graph G_d^* by processing the node ordering backwards and adding edges for each to parents of the processed node.
- The induced width w_d^* of the ordering is the width of G_d^* .

The induced width w^* of graph G is the minimal induced width over all orderings.

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

Directional Path-consistency

Adaptive Consistency

Summary 00

Induced Width of a Graph: Example

F,E,D,C,B,A:

Induced width $w^*_{(F,E,D,C,B,A)}$: 3

Adaptive Consistency

Summary 00

Induced Width of Graph: Algorithm 1

- $\bullet\,$ Determining the induced width of a graph is NP-hard
- Find good ordering in polynomial time

Adaptive Consistency

Summary 00

Induced Width of Graph: Algorithm 1

- Determining the induced width of a graph is NP-hard
- Find good ordering in polynomial time

function MIN-DEGREE:

```
d \leftarrow \text{ array of size } |V|
for i = n, ..., 1:
r \leftarrow a \text{ node in } G \text{ with smallest degree}
d[i] \leftarrow r
Connect r's parents: E \leftarrow E \cup \{(v, v') \mid (v, r), (v', r) \in E\}
Remove all adjacent edges of r from E
Remove r from V
```

Input: Graph G = (V, E)

Effect: *d* contains ordering with small induced width.

Adaptive Consistency

Summary 00

Induced Width of Graph: Algorithm 2

function MIN-FILL:

 $\begin{array}{l} d \leftarrow \text{ array of size } |V| \\ \text{for } i = n, \ldots, 1: \\ r \leftarrow \text{ a node in } G \text{ with fewest missing edges between parents} \\ d[i] \leftarrow r \\ \text{ Connect } r \text{'s parents: } E \leftarrow E \cup \{(v, v') \mid (v, r), (v', r) \in E\} \\ \text{ Remove all adjacent edges of } r \text{ from } E \\ \text{ Remove } r \text{ from } V \end{array}$

Input: Graph G = (V, E)

Effect: *d* contains ordering with small induced width.

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of Graph and Directional Arc-Consistency

Theorem

Let G be the constraint graph of a binary network \mathcal{R} and let d be a variable ordering. If DPC is applied to \mathcal{R} with ordering d then the resulting constraint graph is subsumed by the Graph G_d^* .

Directional Path-consistency

Adaptive Consistency

Summary 00

Width of Graph and Directional Arc-Consistency

Theorem

Let G be the constraint graph of a binary network \mathcal{R} and let d be a variable ordering. If DPC is applied to \mathcal{R} with ordering d then the resulting constraint graph is subsumed by the Graph G_d^* .

Theorem

Given a binary network \mathcal{R} and an ordering d, the time complexity of DPC along d is $O((w_d^*)^2 \cdot n \cdot k^3)$.

Adaptive Consistency

Summary 00

Width of Graph and Directional Arc-Consistency

Theorem

Let G be the constraint graph of a binary network \mathcal{R} and let d be a variable ordering. If DPC is applied to \mathcal{R} with ordering d then the resulting constraint graph is subsumed by the Graph G_d^* .

Theorem

Given a binary network \mathcal{R} and an ordering d, the time complexity of DPC along d is $O((w_d^*)^2 \cdot n \cdot k^3)$.

Previously: $O(n^3k^3)$ Lesson learned: Prefer orderings with small induced width

Dire			

Adaptive Consistency

Adaptive Consistency

Directional Arc-consistency 0000000000	Adaptive Consistency 0●00	
Motivation		

• Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.

	Adaptive Consistency 0000	

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network \mathcal{R} has induced width i 1 for ordering d and it is strong directional *i*-consistent for d then \mathcal{R} is backtrack-free along d.

	Adaptive Consistency 0000		

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:

	Adaptive Consistency 0●00	

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:
 - Select ordering d with small width.

	Adaptive Consistency 0●00	

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:
 - Select ordering d with small width.
 - 2 Compute its induced width w_d^* .

	Adaptive Consistency
	0000

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:
 - Select ordering d with small width.
 - Ompute its induced width w^{*}_d.
 - Solution Apply strong directional $w_d^* + 1$ -consistency.

	Adaptive Consistence
	0000

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:
 - Select ordering d with small width.
 - 2 Compute its induced width w_d^* .
 - Solution Apply strong directional $w_d^* + 1$ -consistency.
 - Oetermine solution with backtrack-free search.

	Adaptive Consister 0●00

icy

- Concept of directional arc- and path-consistency can be generalized to directional *i*-consistency.
- If a network *R* has induced width *i* − 1 for ordering *d* and it is strong directional *i*-consistent for *d* then *R* is backtrack-free along *d*.
- Algorithm idea for CSP solving:
 - Select ordering d with small width.
 - Ompute its induced width w^{*}_d.
 - Solution Apply strong directional $w_d^* + 1$ -consistency.
 - Oetermine solution with backtrack-free search.
- Idea: Combine steps 2 and 3

Adaptive Consistency

Summary 00

Adaptive Consistency: Function ADC

function ADC:

$$E' \leftarrow E, C' \leftarrow C$$

for $k = n, ..., 1$:
 $S \leftarrow$ parents of x_k w.r.t. E' and d
 $R_S \leftarrow \text{REVISE}(S, x_k)$
 $C' \leftarrow C' \cup R_S$
 $E' \leftarrow E' \cup \{(x_i, x_j) \mid x_i, x_j \in S, x_i \neq x_j\}$

Input: Constraint network $\mathcal{R} = (X, D, C)$ with constraint graph G = (V, E) and variable ordering $d = (x_1, \dots, x_n)$

Effect: Enforces strong directional $w_d^* + 1$ -consistency and the resulting network has width bounded by w_d^* . \mathcal{R} consistent \Rightarrow resulting network backtrack-free along d. Time complexity: $O(n \cdot (2k)^{w_d^*+1})$
Directional Arc-consistency

Directional Path-consistency

Adaptive Consistency

Summary 00

Tractable Class of Constraint Satisfaction Problems

If the induced width for a problem is bounded by a constant b, we can efficiently find an ordering d with $w_d^* \leq b$.

Directional Path-consistency

Adaptive Consistency

Tractable Class of Constraint Satisfaction Problems

If the induced width for a problem is bounded by a constant b, we can efficiently find an ordering d with $w_d^* \leq b$.

Theorem

The class of constraint problems whose induced width is bounded by a constant b is solvable in polynomial time and space.

Directional Arc-consistency		Summary
		•0

Summary

Summary

- Directional arc- and path-consistency can be used as preprocessing algorithm or for interleaved reasoning during search.
- Guarantee backtrack-free search for problems with induced width 1 (for directional arc-consistency) and 2 (for strong directional path-consistency), respectively.
- Identified a tractable class of constraint satisfaction problems
- Purely structural criterion: induced width of constraint graph