Seminar: Search and Optimization

Consistency-Enforcing and Constraint Propagation

Presentation: Martin Wehrle

University of Basel

October 16, 2014

Inference

Inference
©0®000

Inference

What is Inference?

@ Derivation of additional constraints that are implied from
known constraints

Why can Inference be Useful?

@ Narrows the search space of possible partial solutions

@ Search for solutions becomes more focused

Inference
0000

Inference

Constraint network with variables v1, va, v3 with domain {1,2, 3}
and constraints v; < v» and v» < vj.

It follows:
@ v, cannot be equal to 3
(new unary constraint = restriction of the domain of v,)
o Ry, ={(1,2),(1,3),(2,3)} can be made stronger to {(1,2)}
(tightened binary constraint)

Inference
000e0

Inference

Inference formally

For a given constraint network R, replace R with an equivalent,
but tighter network.

Trade-off:
@ the more complex the interference,
@ the more additional constraints can be inferred, but

@ the higher the time complexity

Inference
ooooe

Inference

In this talk, we consider increasingly powerful inference methods.

@ Arc-consistency

@ Path-consistency

@ j-consistency

Arc-Consistency

9000000000000

Arc-Consistency

Arc-Consistency
0®00000000000

Arc-Consistency: Definition

Definition (Arc-Consistent)
Let R = (X, D, C) be a constraint network.

(a) A variable v € X is arc-consistent with respect to another
variable v/ € X if for every value d € D, there is a value
d’ € D, such that (d,d’) € R,,.

(b) The constraint network R is arc-consistent if every variable

v € X is arc-consistent with respect to every other variable
/
v e X.

Arc-Consistency
00®0000000000

Arc-Consistency: Example

Consider a constraint network with variables v; and v», domains
D,, = D,, = {1,2,3}, and the constraint v; < v».

Vi V2

@ v; not arc-consistent with respect to v,

@ v, not arc-consistent with respect to v;

Arc-Consistency
000®000000000

Enforcing Arc-Consistency

e Enforcing arc-consistency, i. e., removing values of D, that
violate the arc-consistency of v with respect to v/ is a correct
inference method. (Why?)

@ In the following, we consider algorithms to enforce
arc-consistency.

Arc-Consistency
0000®00000000

Single Pair of Variables: Function revise

function revise(R, v, V'):
(X,D,C) =R
for each d € D, :
if there is no d’ € D,/ with (d,d") € R,,:
remove d from D,

Input: Constraint network R and two variables v, v/ in R

Effect: Enforces arc-consistency of v with respect to v'.
All violating values are removed from D,.

Time complexity: O(k?), where k bounds the domain size.

Arc-Consistency
00000®0000000

Example: revise

Arc-Consistency
00000®0000000

Example: revise

Arc-Consistency
00000®0000000

Example: revise

Arc-Consistency
00000®0000000

Example: revise

Arc-Consistency
00000®0000000

Example: revise

Arc-Consistency
000000e000000

Enforcing Arc-Consistency: AC-1

function AC-1(R):
(X,D,C):=R
repeat
for each nontrivial constraint R,, € C:
revise(R, u, v)
revise(R, v, u)
until no domain has changed in this iteration

Input: Constraint network R
Effect: transforms R into equivalent network that is arc-consistent
Time complexity: ?

Arc-Consistency
000000e000000

Enforcing Arc-Consistency: AC-1

function AC-1(R):
(X,D,C):=R
repeat
for each nontrivial constraint R,, € C:
revise(R, u, v)
revise(R, v, u)
until no domain has changed in this iteration

Input: Constraint network R
Effect: transforms R into equivalent network that is arc-consistent

Time complexity: O(n - e - k3), for n variables, e nontrivial
constraints, and kK maximal domain size

Arc-Consistency
0000000800000

AC-1: Discussion

@ AC-1 does the job, but in an inefficient way.

@ Often variable pairs are checked again and again although
their domains have not changed.

@ These checks can be saved.

~» more efficient algorithm: AC-3

Arc-Consistency
00000000e0000

Enforcing Arc-Consistency: AC-3

Idea: store variable pairs that are potentially inconsistent in a queue

function AC-3(R):

(X,D,C):=R

queue :=)

for each nontrivial constraint R,, € C:

insert (u,v) into queue
insert (v, u) into queue

while queue # (:
remove an arbitrary element (u, v) from queue
revise(R, u, v)
if D, changed in the call to revise:
for each w € X \ {u, v} where Ry, is nontrivial:
insert (w, u) into queue

Arc-Consistency
0000000008000

AC-3: Discussion

@ queue can be an arbitrary data structure that allows for
“insert” and “get” operations (the order of getting the
variable pairs does not affect the result)

~ efficient e. g. a stack
@ AC-3 has the same effect as AC-1: it enforces arc-consistency

@ Proof idea: Invariant of the while loop: If (u, v) ¢ queue, then
u is arc-consistent with respect to v

Arc-Consistency
0000000000e00

AC-3: Time Complexity

Proposition (Time complexity of AC-3)
Let R be a constraint network with e nontrivial constraints and

maximal domain size k.
Then AC-3 has time complexity O(e - k3).

Arc-Consistency
0000000000080

AC-3: Time Complexity (Proof)

Consider a pair (u, v) for which there is a nontrivial constraint R, .
There are e such pairs.

Arc-Consistency
0000000000080

AC-3: Time Complexity (Proof)

Proof
Consider a pair (u, v) for which there is a nontrivial constraint R, .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

Arc-Consistency
0000000000080

AC-3: Time Complexity (Proof)

Proof

Consider a pair (u, v) for which there is a nontrivial constraint R, .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Arc-Consistency
0000000000080

AC-3: Time Complexity (Proof)

Proof

Consider a pair (u, v) for which there is a nontrivial constraint R, .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair (u, v) is inserted into the queue at most k + 1
times ~~ all in all, we have at most O(ek) insert operations.

Arc-Consistency
0000000000080

AC-3: Time Complexity (Proof)

Proof

Consider a pair (u, v) for which there is a nontrivial constraint R, .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair (u, v) is inserted into the queue at most k + 1
times ~~ all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) - O(k?) = O(ek3).

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vi, vo, v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

3 @ Queue
Vi, V3)

V2, V3)
V3, v2)

(
(V3a Vl)
(
(

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vi, vo, v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

3 @ Queue

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

%] @ Queue

(Vl’ V3)
(v3,v1)

(V27 V3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 @ Queue
(V1, V3)

(V3a Vl)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue
(V1, V3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue
(V1, V3)

(v2, v3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue
(V1, V3)

(v2, v3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue
(V1, V3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue
(vi,v3)

Arc-Consistency
000000000000e

AC-3: Example

Consider the constraint network with three variables vq, v», v3
with D,, = {2,4} and D,, = D,, = {2,5}
and the constraints v3|v; and v3|v, (“divides evenly”).

V3 e Queue

Path-Consistency

Path-Consistency
0®00000

Beyond Arc-Consistency: Path-Consistency

Recall: Idea of Arc-Consistency:
@ For every value of variable u there exists a consistent value for
every other variable v
@ Values of u that do not have this property are not allowed

~ tightens unary constraint on u

Idea can be extended to three variables (path-consistency):

@ For every common valuation of u, v there must be a
consistent value for every other variable w

@ Pairs of values for u and v that do not have this property are
not allowed

~ tightens binary constraint on v and v

Path-Consistency
©0®0000

Path-Consistency: Definition

Definition (Path-Consistent)
Let R = (X, D, C) be a constraint network.

(a) Two different variables u, v € X are path-consistent with
respect to a third variable w € X if for all values
d, € Dy, d, € D, with (u,v) € R,,, there is a value d,, € D,,
such that (dy, dw) € Ruw and (d,, dw) € Ruw.

(b) The constraint network R is path-consistent, if for three

different variables u, v, w, it holds that v and v are
path-consistent with respect to w.

Path-Consistency
0008000

Path-Consistency: Example

Vi

Vo V3

arc-consistent, but not path-consistent

Path-Consistency

0000e00

Triple of Variables: revise-3

Analogous to revise for arc-consistency:

function revise-3(R, u, v, w):

(X,D,C):=R
for each (d,,d,) € Ry.:
if there is no d,, € D,, with
(du, dw) € Ruw and (d,, dy) € Ry:
remove (d,, d,) from R,

Input: Constraint network R and three variables u, v, w of R

Effect: Turns u, v path-consistent with respect to w.
All violating pairs of variables are removed from R, .

Time complexity: O(k3), where k is the maximal domain size

Path-Consistency

0000080

Enforcing Path-Consistency: PC-2

Analogous to AC-3 for arc-consistency:

function PC-2(R):

(X,D,C):=R
queue :== ()
for each set of two variables {u, v}:
for each w € X\ {u, v}:
insert (u, v, w) into queue

while queue # (:
remove any element (u, v, w) from queue
revise-3(R, u, v, w)
if R,, changed in the call to revise-3:
for each v’ € X\ {u, v}:
insert (W', u, v) into queue
insert (w’, v, u) into queue

Path-Consistency
©00000e

Path-Consistency: Summary

o Generalization of
arc-consistency (which considers pairs of variables) to
path-consistency (which considers triples of variables)

@ Arc-consistency tightens unary constraints

@ Path-consistency tightens binary constraints

i-Consistency

i-Consistency
0®000

i-Consistency: ldea

o Further generalize previous concepts

o For every valuation of vy,...,v;_1 there must exist a
corresponding consistent valuation of every other variable v;

@ Otherwise the valuation for vi,...,v;_1 (that is not
extendable to v;) is not allowed

tightens (/ — 1)-ary constraint on vq,...,vj_1

§

also affects non-binary constraints

§

i-Consistency
©0®00

i-Consistency: Definition

Definition (i-Consistent)
Let R = (X, D, C) be a constraint network.

(a) A relation Rs € C with |S| =i — 1 is i-consistent with respect
to a variable y ¢ S if for every t € Rs, there is a value d € D,
such that t and d are consistent.

(b) The constraint network R is i-consistent if for any consistent
valuation of any i — 1 distinct variables in X, there is a
valuation of any ith variable such that the / values together
satisfy all of the constraints among the i variables.

i-Consistency
[eleTe] Yol

i-Consistency: Example

Constraint network R for the 4-queens problem.

Vi V2 V3 v Vi V2 V3 v
11Q 1Q

2 2 Q

3 Q 3

4 4 Q

@ R is 2-consistent: All single queen placements can be extended

@ R is not 3-consistent: There are valid placements of 2 queens
that cannot be extended (left)

@ R is not 4-consistent: There are valid placements of 3 queens
that cannot be extended (right)

i-Consistency
ooooe

Enforcing i-Consistency

@ There exist extensions of arc- and path-consistency algorithms
to enforce i-consistency

@ We are not going into more detail here

Summary

Summary
oce

Inference: Summary

@ Inference: Derivation of additional constraints that are implied
by the given constraints

~~ equivalent but tighter constraint network
@ Useful for search-based solving approaches (~ next chapters)
@ Trade-off: Number of inferred constraints vs. time complexity

	Inference
	Arc-Consistency
	Path-Consistency
	i-Consistency
	Summary

