Seminar: Search and Optimization Consistency-Enforcing and Constraint Propagation

Presentation: Martin Wehrle

University of Basel

October 16, 2014

Inference		
00000		

Inference 0●000		

What is Inference?

Interence

• Derivation of additional constraints that are implied from known constraints

Why can Inference be Useful?

- Narrows the search space of possible partial solutions
- Search for solutions becomes more focused

Inference 00●00		

Example

Constraint network with variables v_1 , v_2 , v_3 with domain $\{1, 2, 3\}$ and constraints $v_1 < v_2$ and $v_2 < v_3$.

It follows:

- v₂ cannot be equal to 3 (new unary constraint = restriction of the domain of v₂)
- $R_{\nu_1\nu_2} = \{\langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle\}$ can be made stronger to $\{\langle 1,2 \rangle\}$ (tightened binary constraint)

Inference 000●0		
Inference		

Inference formally

For a given constraint network \mathcal{R} , replace \mathcal{R} with an equivalent, but tighter network.

Trade-off:

- the more complex the interference,
- the more additional constraints can be inferred, but
- the higher the time complexity

Inference 0000●		
Inference		

In this talk, we consider increasingly powerful inference methods.

Outline Arc-consistency Path-consistency *i*-consistency

Arc-Consistency		
000000000000		

Arc-Consistency

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Arc-Consistency: Definition

Definition (Arc-Consistent)

Let $\mathcal{R} = (X, D, C)$ be a constraint network.

- (a) A variable $v \in X$ is arc-consistent with respect to another variable $v' \in X$ if for every value $d \in D_v$ there is a value $d' \in D_{v'}$ such that $\langle d, d' \rangle \in R_{vv'}$.
- (b) The constraint network *R* is arc-consistent if every variable v ∈ X is arc-consistent with respect to every other variable v' ∈ X.

Arc-Consistency

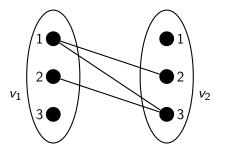
Path-Consistency

i-Consistency

Summary 00

Arc-Consistency: Example

Consider a constraint network with variables v_1 and v_2 , domains $D_{v_1} = D_{v_2} = \{1, 2, 3\}$, and the constraint $v_1 < v_2$.



- v₁ not arc-consistent with respect to v₂
- v₂ not arc-consistent with respect to v₁

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Enforcing Arc-Consistency

- Enforcing arc-consistency, i. e., removing values of D_v that violate the arc-consistency of v with respect to v' is a correct inference method. (Why?)
- In the following, we consider algorithms to enforce arc-consistency.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Single Pair of Variables: Function revise

function revise(\mathcal{R}, v, v'):

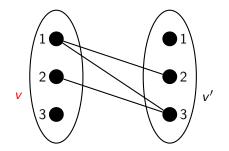
 $\begin{aligned} (X, D, C) &:= \mathcal{R} \\ \text{for each } d \in D_v: \\ & \text{if there is no } d' \in D_{v'} \text{ with } \langle d, d' \rangle \in R_{vv'}: \\ & \text{ remove } d \text{ from } D_v \end{aligned}$

Input: Constraint network $\mathcal R$ and two variables v, v' in $\mathcal R$

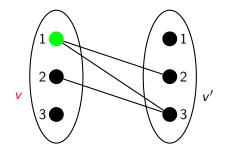
Effect: Enforces arc-consistency of v with respect to v'. All violating values are removed from D_v .

Time complexity: $O(k^2)$, where k bounds the domain size.

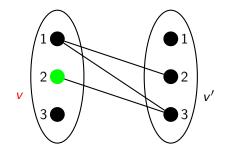
	Arc-Consistency 000000000000		
Examp	le: revise		



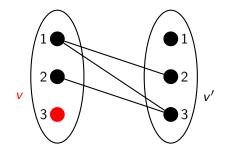
	Arc-Consistency 000000000000		
Examp	le: revise		



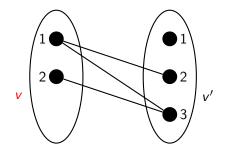
	Arc-Consistency 000000000000		
Examp	le: revise		



	Arc-Consistency 000000000000		
Examp	le: revise		



	Arc-Consistency 000000000000		
Examp	le: revise		



Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Enforcing Arc-Consistency: AC-1

function AC-1(\mathcal{R}):

 $(X, D, C) := \mathcal{R}$

repeat

for each nontrivial constraint $R_{uv} \in C$: revise (\mathcal{R}, u, v) revise (\mathcal{R}, v, u) until no domain has changed in this iteration

Input: Constraint network \mathcal{R} Effect: transforms \mathcal{R} into equivalent network that is arc-consistent Time complexity: ?

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Enforcing Arc-Consistency: AC-1

function AC-1(\mathcal{R}):

 $(X, D, C) := \mathcal{R}$

repeat

for each nontrivial constraint $R_{uv} \in C$: revise (\mathcal{R}, u, v) revise (\mathcal{R}, v, u) until no domain has changed in this iteration

Input: Constraint network \mathcal{R}

Effect: transforms \mathcal{R} into equivalent network that is arc-consistent Time complexity: $O(n \cdot e \cdot k^3)$, for *n* variables, *e* nontrivial constraints, and *k* maximal domain size

	Arc-Consistency 000000000000		
AC-1: Dis	cussion		

- AC-1 does the job, but in an inefficient way.
- Often variable pairs are checked again and again although their domains have not changed.
- These checks can be saved.

 \rightsquigarrow more efficient algorithm: AC-3

Arc-Consistency 00000000000000 Path-Consistency

i-Consistency

Summary 00

Enforcing Arc-Consistency: AC-3

Idea: store variable pairs that are potentially inconsistent in a queue

function AC-3(\mathcal{R}):

 $(X, D, C) := \mathcal{R}$ queue := \emptyset for each nontrivial constraint $R_{\mu\nu} \in C$: insert $\langle u, v \rangle$ into queue insert $\langle v, u \rangle$ into queue while queue $\neq \emptyset$: remove an arbitrary element $\langle u, v \rangle$ from queue revise(\mathcal{R}, u, v) if D_{μ} changed in the call to revise: for each $w \in X \setminus \{u, v\}$ where R_{wu} is nontrivial: insert $\langle w, u \rangle$ into queue

	Arc-Consistency 0000000000000		
AC-3:	Discussion		

- *queue* can be an arbitrary data structure that allows for "insert" and "get" operations (the order of getting the variable pairs does not affect the result)
- → efficient e.g. a stack
 - AC-3 has the same effect as AC-1: it enforces arc-consistency
 - Proof idea: Invariant of the while loop: If ⟨u, v⟩ ∉ queue, then u is arc-consistent with respect to v

Arc-Consistency

AC-3: Time Complexity

Proposition (Time complexity of AC-3)

Let \mathcal{R} be a constraint network with *e* nontrivial constraints and maximal domain size k.

Then AC-3 has time complexity $O(e \cdot k^3)$.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

AC-3: Time Complexity (Proof)

Proof

Consider a pair $\langle u, v \rangle$ for which there is a nontrivial constraint R_{uv} . There are *e* such pairs.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

AC-3: Time Complexity (Proof)

Proof

Consider a pair $\langle u, v \rangle$ for which there is a nontrivial constraint R_{uv} . There are *e* such pairs.

Every time a pair is inserted into the queue (except for the first time), the domain of the second variable has been reduced before.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

AC-3: Time Complexity (Proof)

Proof

Consider a pair $\langle u, v \rangle$ for which there is a nontrivial constraint R_{uv} . There are *e* such pairs.

Every time a pair is inserted into the queue (except for the first time), the domain of the second variable has been reduced before. This can happen at most k times.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

AC-3: Time Complexity (Proof)

Proof

Consider a pair $\langle u, v \rangle$ for which there is a nontrivial constraint R_{uv} . There are *e* such pairs.

Every time a pair is inserted into the queue (except for the first time), the domain of the second variable has been reduced before. This can happen at most k times.

Hence, every pair $\langle u, v \rangle$ is inserted into the queue at most k + 1 times \rightsquigarrow all in all, we have at most O(ek) insert operations.

Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

AC-3: Time Complexity (Proof)

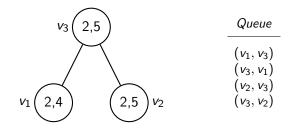
Proof

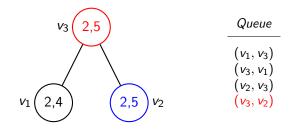
Consider a pair $\langle u, v \rangle$ for which there is a nontrivial constraint R_{uv} . There are *e* such pairs.

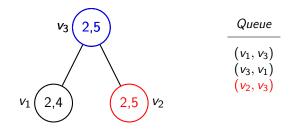
Every time a pair is inserted into the queue (except for the first time), the domain of the second variable has been reduced before. This can happen at most k times.

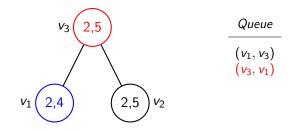
Hence, every pair $\langle u, v \rangle$ is inserted into the queue at most k + 1 times \rightsquigarrow all in all, we have at most O(ek) insert operations.

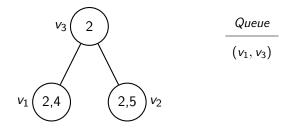
This restricts the number of **while** iterations to O(ek), therefore the revise calls need time at most $O(ek) \cdot O(k^2) = O(ek^3)$.

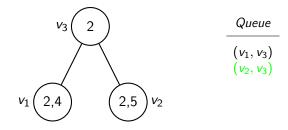


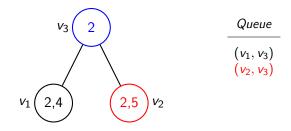


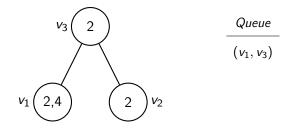


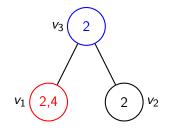






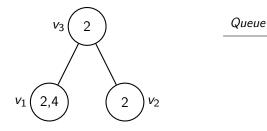






Queue
(v1, v3)

Consider the constraint network with three variables v_1 , v_2 , v_3 with $D_{v_1} = \{2,4\}$ and $D_{v_2} = D_{v_3} = \{2,5\}$ and the constraints $v_3|v_1$ and $v_3|v_2$ ("divides evenly").



Inference	Arc-Consistency	Path-Consistency	<i>i</i> -Consistency	Summary
00000	000000000000	•000000	00000	00

Path-Consistency

Beyond Arc-Consistency: Path-Consistency

Recall: Idea of Arc-Consistency:

- For every value of variable u there exists a consistent value for every other variable v
- Values of *u* that do not have this property are not allowed
- \rightsquigarrow tightens unary constraint on u

Idea can be extended to three variables (path-consistency):

- For every common valuation of *u*, *v* there must be a consistent value for every other variable *w*
- Pairs of values for *u* and *v* that do not have this property are not allowed
- \rightsquigarrow tightens binary constraint on u and v

Inference 00000 Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

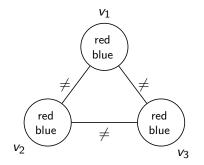
Path-Consistency: Definition

Definition (Path-Consistent)

Let $\mathcal{R} = (X, D, C)$ be a constraint network.

- (a) Two different variables $u, v \in X$ are path-consistent with respect to a third variable $w \in X$ if for all values $d_u \in D_u, d_v \in D_v$ with $\langle u, v \rangle \in R_{uv}$, there is a value $d_w \in D_w$ such that $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_v, d_w \rangle \in R_{vw}$.
- (b) The constraint network R is path-consistent, if for three different variables u, v, w, it holds that u and v are path-consistent with respect to w.

Path-Consistency: Example



arc-consistent, but not path-consistent

Inference		Path-Consistency	
00000	000000000000	0000000	00000

Triple of Variables: revise-3

Analogous to revise for arc-consistency:

function revise-3(\mathcal{R}, u, v, w): (X, D, C) := \mathcal{R} for each $\langle d_u, d_v \rangle \in R_{uv}$: if there is no $d_w \in D_w$ with $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_v, d_w \rangle \in R_{vw}$: remove $\langle d_u, d_v \rangle$ from R_{uv}

Input: Constraint network \mathcal{R} and three variables u, v, w of \mathcal{R} Effect: Turns u, v path-consistent with respect to w. All violating pairs of variables are removed from R_{uv} . Time complexity: $O(k^3)$, where k is the maximal domain size Inference 00000 Arc-Consistency

Path-Consistency

i-Consistency

Summary 00

Enforcing Path-Consistency: PC-2

Analogous to AC-3 for arc-consistency:

function $PC-2(\mathcal{R})$:

 $(X, D, C) := \mathcal{R}$ aueue := \emptyset for each set of two variables $\{u, v\}$: for each $w \in X \setminus \{u, v\}$: insert $\langle u, v, w \rangle$ into queue while queue $\neq \emptyset$: remove any element $\langle u, v, w \rangle$ from queue revise-3(\mathcal{R}, u, v, w) if $R_{\mu\nu}$ changed in the call to revise-3: for each $w' \in X \setminus \{u, v\}$: insert $\langle w', u, v \rangle$ into queue insert $\langle w', v, u \rangle$ into queue

Arc-Cons 000000 Path-Consistency

i-Consistency

Summary 00

Path-Consistency: Summary

- Generalization of arc-consistency (which considers pairs of variables) to path-consistency (which considers triples of variables)
- Arc-consistency tightens unary constraints
- Path-consistency tightens binary constraints

	<i>i</i> -Consistency ●0000	

i-Consistency

i-Consistency: Idea

- Further generalize previous concepts
- For every valuation of v₁,..., v_{i-1} there must exist a corresponding consistent valuation of every other variable v_i
- Otherwise the valuation for v₁,..., v_{i-1} (that is not extendable to v_i) is not allowed
- \rightsquigarrow tightens (i-1)-ary constraint on v_1, \ldots, v_{i-1}
- → also affects non-binary constraints

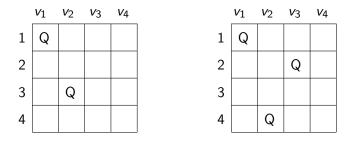
i-Consistency: Definition

Definition (*i*-Consistent)

- Let $\mathcal{R} = (X, D, C)$ be a constraint network.
- (a) A relation $R_S \in C$ with |S| = i 1 is *i*-consistent with respect to a variable $y \notin S$ if for every $t \in R_S$, there is a value $d \in D_y$ such that t and d are consistent.
- (b) The constraint network R is *i*-consistent if for any consistent valuation of any *i* 1 distinct variables in X, there is a valuation of any *i*th variable such that the *i* values together satisfy all of the constraints among the *i* variables.

		<i>i</i> -Consistency 000●0	
i-Consiste	ency: Example		

Constraint network \mathcal{R} for the 4-queens problem.



- \mathcal{R} is 2-consistent: All single queen placements can be extended
- \mathcal{R} is not 3-consistent: There are valid placements of 2 queens that cannot be extended (left)
- \mathcal{R} is not 4-consistent: There are valid placements of 3 queens that cannot be extended (right)

 Inference
 Arc-Consistency
 Path-Consistency
 i-C

 00000
 00000000000
 00000000
 000

Enforcing *i*-Consistency

- There exist extensions of arc- and path-consistency algorithms to enforce *i*-consistency
- We are not going into more detail here

		Summary
		•o

Summary

Inference		
00000		

Inference: Summary

• Inference: Derivation of additional constraints that are implied by the given constraints

Summarv

- → equivalent but tighter constraint network
 - Useful for search-based solving approaches (~> next chapters)
 - Trade-off: Number of inferred constraints vs. time complexity