
Seminar: Search and Optimization
Consistency-Enforcing and Constraint Propagation

Presentation: Martin Wehrle

University of Basel

October 16, 2014

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference

What is Inference?

Derivation of additional constraints that are implied from
known constraints

Why can Inference be Useful?

Narrows the search space of possible partial solutions

Search for solutions becomes more focused

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference

Example

Constraint network with variables v1, v2, v3 with domain {1, 2, 3}
and constraints v1 < v2 and v2 < v3.

It follows:

v2 cannot be equal to 3
(new unary constraint = restriction of the domain of v2)

Rv1v2 = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉} can be made stronger to {〈1, 2〉}
(tightened binary constraint)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference

Inference formally

For a given constraint network R, replace R with an equivalent,
but tighter network.

Trade-off:

the more complex the interference,

the more additional constraints can be inferred, but

the higher the time complexity

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference

In this talk, we consider increasingly powerful inference methods.

Outline

Arc-consistency

Path-consistency

i-consistency

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Arc-Consistency

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Arc-Consistency: Definition

Definition (Arc-Consistent)

Let R = (X ,D,C) be a constraint network.

(a) A variable v ∈ X is arc-consistent with respect to another
variable v ′ ∈ X if for every value d ∈ Dv there is a value
d ′ ∈ Dv ′ such that 〈d , d ′〉 ∈ Rvv ′ .

(b) The constraint network R is arc-consistent if every variable
v ∈ X is arc-consistent with respect to every other variable
v ′ ∈ X .

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Arc-Consistency: Example

Consider a constraint network with variables v1 and v2, domains
Dv1 = Dv2 = {1, 2, 3}, and the constraint v1 < v2.

1

2

3

1

2

3

v1 v2

v1 not arc-consistent with respect to v2

v2 not arc-consistent with respect to v1

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing Arc-Consistency

Enforcing arc-consistency, i. e., removing values of Dv that
violate the arc-consistency of v with respect to v ′ is a correct
inference method. (Why?)

In the following, we consider algorithms to enforce
arc-consistency.

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Single Pair of Variables: Function revise

function revise(R, v , v ′):

(X ,D,C) := R
for each d ∈ Dv :

if there is no d ′ ∈ Dv ′ with 〈d , d ′〉 ∈ Rvv ′ :
remove d from Dv

Input: Constraint network R and two variables v , v ′ in R
Effect: Enforces arc-consistency of v with respect to v ′.
All violating values are removed from Dv .

Time complexity: O(k2), where k bounds the domain size.

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Example: revise

1

2

1

2

3

v v ′

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing Arc-Consistency: AC-1

function AC-1(R):

(X ,D,C) := R
repeat

for each nontrivial constraint Ruv ∈ C :
revise(R, u, v)
revise(R, v , u)

until no domain has changed in this iteration

Input: Constraint network R
Effect: transforms R into equivalent network that is arc-consistent

Time complexity: ?

O(n · e · k3), for n variables, e nontrivial
constraints, and k maximal domain size

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing Arc-Consistency: AC-1

function AC-1(R):

(X ,D,C) := R
repeat

for each nontrivial constraint Ruv ∈ C :
revise(R, u, v)
revise(R, v , u)

until no domain has changed in this iteration

Input: Constraint network R
Effect: transforms R into equivalent network that is arc-consistent

Time complexity: O(n · e · k3), for n variables, e nontrivial
constraints, and k maximal domain size

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-1: Discussion

AC-1 does the job, but in an inefficient way.

Often variable pairs are checked again and again although
their domains have not changed.

These checks can be saved.

 more efficient algorithm: AC-3

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing Arc-Consistency: AC-3

Idea: store variable pairs that are potentially inconsistent in a queue

function AC-3(R):

(X ,D,C) := R
queue := ∅
for each nontrivial constraint Ruv ∈ C :

insert 〈u, v〉 into queue
insert 〈v , u〉 into queue

while queue 6= ∅:
remove an arbitrary element 〈u, v〉 from queue
revise(R, u, v)
if Du changed in the call to revise:

for each w ∈ X \ {u, v} where Rwu is nontrivial:
insert 〈w , u〉 into queue

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Discussion

queue can be an arbitrary data structure that allows for
“insert” and “get” operations (the order of getting the
variable pairs does not affect the result)

 efficient e. g. a stack

AC-3 has the same effect as AC-1: it enforces arc-consistency

Proof idea: Invariant of the while loop: If 〈u, v〉 /∈ queue, then
u is arc-consistent with respect to v

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity

Proposition (Time complexity of AC-3)

Let R be a constraint network with e nontrivial constraints and
maximal domain size k .
Then AC-3 has time complexity O(e · k3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue

(v1, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue

(v1, v3)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Path-Consistency

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Beyond Arc-Consistency: Path-Consistency

Recall: Idea of Arc-Consistency:

For every value of variable u there exists a consistent value for
every other variable v

Values of u that do not have this property are not allowed

 tightens unary constraint on u

Idea can be extended to three variables (path-consistency):

For every common valuation of u, v there must be a
consistent value for every other variable w

Pairs of values for u and v that do not have this property are
not allowed

 tightens binary constraint on u and v

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Path-Consistency: Definition

Definition (Path-Consistent)

Let R = (X ,D,C) be a constraint network.

(a) Two different variables u, v ∈ X are path-consistent with
respect to a third variable w ∈ X if for all values
du ∈ Du, dv ∈ Dv with 〈u, v〉 ∈ Ruv , there is a value dw ∈ Dw

such that 〈du, dw 〉 ∈ Ruw and 〈dv , dw 〉 ∈ Rvw .

(b) The constraint network R is path-consistent, if for three
different variables u, v , w , it holds that u and v are
path-consistent with respect to w .

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Path-Consistency: Example

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

6=

arc-consistent, but not path-consistent

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Triple of Variables: revise-3

Analogous to revise for arc-consistency:

function revise-3(R, u, v ,w):

(X ,D,C) := R
for each 〈du, dv 〉 ∈ Ruv :

if there is no dw ∈ Dw with
〈du, dw 〉 ∈ Ruw and 〈dv , dw 〉 ∈ Rvw :
remove 〈du, dv 〉 from Ruv

Input: Constraint network R and three variables u, v , w of R
Effect: Turns u, v path-consistent with respect to w .
All violating pairs of variables are removed from Ruv .

Time complexity: O(k3), where k is the maximal domain size

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing Path-Consistency: PC-2

Analogous to AC-3 for arc-consistency:

function PC-2(R):

(X ,D,C) := R
queue := ∅
for each set of two variables {u, v}:

for each w ∈ X \ {u, v}:
insert 〈u, v ,w〉 into queue

while queue 6= ∅:
remove any element 〈u, v ,w〉 from queue
revise-3(R, u, v ,w)
if Ruv changed in the call to revise-3:

for each w ′ ∈ X \ {u, v}:
insert 〈w ′, u, v〉 into queue
insert 〈w ′, v , u〉 into queue

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Path-Consistency: Summary

Generalization of
arc-consistency (which considers pairs of variables) to
path-consistency (which considers triples of variables)

Arc-consistency tightens unary constraints

Path-consistency tightens binary constraints

Inference Arc-Consistency Path-Consistency i-Consistency Summary

i -Consistency

Inference Arc-Consistency Path-Consistency i-Consistency Summary

i -Consistency: Idea

Further generalize previous concepts

For every valuation of v1, . . . , vi−1 there must exist a
corresponding consistent valuation of every other variable vi

Otherwise the valuation for v1, . . . , vi−1 (that is not
extendable to vi) is not allowed

 tightens (i − 1)-ary constraint on v1, . . . , vi−1

 also affects non-binary constraints

Inference Arc-Consistency Path-Consistency i-Consistency Summary

i -Consistency: Definition

Definition (i-Consistent)

Let R = (X ,D,C) be a constraint network.

(a) A relation RS ∈ C with |S | = i − 1 is i-consistent with respect
to a variable y /∈ S if for every t ∈ RS , there is a value d ∈ Dy

such that t and d are consistent.

(b) The constraint network R is i-consistent if for any consistent
valuation of any i − 1 distinct variables in X , there is a
valuation of any ith variable such that the i values together
satisfy all of the constraints among the i variables.

Inference Arc-Consistency Path-Consistency i-Consistency Summary

i -Consistency: Example

Constraint network R for the 4-queens problem.

v1 v2 v3 v4

1 Q

2

3 Q

4

v1 v2 v3 v4

1 Q

2 Q

3

4 Q

R is 2-consistent: All single queen placements can be extended

R is not 3-consistent: There are valid placements of 2 queens
that cannot be extended (left)

R is not 4-consistent: There are valid placements of 3 queens
that cannot be extended (right)

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Enforcing i -Consistency

There exist extensions of arc- and path-consistency algorithms
to enforce i-consistency

We are not going into more detail here

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Summary

Inference Arc-Consistency Path-Consistency i-Consistency Summary

Inference: Summary

Inference: Derivation of additional constraints that are implied
by the given constraints

 equivalent but tighter constraint network

Useful for search-based solving approaches (next chapters)

Trade-off: Number of inferred constraints vs. time complexity

	Inference
	Arc-Consistency
	Path-Consistency
	i-Consistency
	Summary

