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Consistency-Enforcing and Constraint Propagation Inference

Inference

What is Inference?

I Derivation of additional constraints that are implied from
known constraints

Why can Inference be Useful?

I Narrows the search space of possible partial solutions

I Search for solutions becomes more focused
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Inference

Example

Constraint network with variables v1, v2, v3 with domain {1, 2, 3}
and constraints v1 < v2 and v2 < v3.

It follows:

I v2 cannot be equal to 3
(new unary constraint = restriction of the domain of v2)

I Rv1v2 = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉} can be made stronger to {〈1, 2〉}
(tightened binary constraint)
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Inference

Inference formally

For a given constraint network R, replace R with an equivalent,
but tighter network.

Trade-off:

I the more complex the interference,

I the more additional constraints can be inferred, but

I the higher the time complexity
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Inference

In this talk, we consider increasingly powerful inference methods.

Outline

I Arc-consistency

I Path-consistency

I i-consistency
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Consistency-Enforcing and Constraint Propagation Arc-Consistency

2 Arc-Consistency
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Arc-Consistency: Definition

Definition (Arc-Consistent)

Let R = (X ,D,C ) be a constraint network.

(a) A variable v ∈ X is arc-consistent with respect to another
variable v ′ ∈ X if for every value d ∈ Dv there is a value
d ′ ∈ Dv ′ such that 〈d , d ′〉 ∈ Rvv ′ .

(b) The constraint network R is arc-consistent if every variable
v ∈ X is arc-consistent with respect to every other variable
v ′ ∈ X .
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Arc-Consistency: Example

Consider a constraint network with variables v1 and v2, domains
Dv1 = Dv2 = {1, 2, 3}, and the constraint v1 < v2.

1

2

3

1

2

3

v1 v2

I v1 not arc-consistent with respect to v2
I v2 not arc-consistent with respect to v1
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Enforcing Arc-Consistency

I Enforcing arc-consistency, i. e., removing values of Dv that
violate the arc-consistency of v with respect to v ′ is a correct
inference method. (Why?)

I In the following, we consider algorithms to enforce
arc-consistency.
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Single Pair of Variables: Function revise

function revise(R, v , v ′):

(X ,D,C ) := R
for each d ∈ Dv :

if there is no d ′ ∈ Dv ′ with 〈d , d ′〉 ∈ Rvv ′ :
remove d from Dv

Input: Constraint network R and two variables v , v ′ in R
Effect: Enforces arc-consistency of v with respect to v ′.
All violating values are removed from Dv .

Time complexity: O(k2), where k bounds the domain size.
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Example: revise

11

22

33

1

2

3

v v ′
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Enforcing Arc-Consistency: AC-1

function AC-1(R):

(X ,D,C ) := R
repeat

for each nontrivial constraint Ruv ∈ C :
revise(R, u, v)
revise(R, v , u)

until no domain has changed in this iteration

Input: Constraint network R
Effect: transforms R into equivalent network that is arc-consistent

Time complexity: ?O(n · e · k3), for n variables, e nontrivial
constraints, and k maximal domain size
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AC-1: Discussion

I AC-1 does the job, but in an inefficient way.

I Often variable pairs are checked again and again although
their domains have not changed.

I These checks can be saved.

 more efficient algorithm: AC-3
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Enforcing Arc-Consistency: AC-3

Idea: store variable pairs that are potentially inconsistent in a queue

function AC-3(R):

(X ,D,C ) := R
queue := ∅
for each nontrivial constraint Ruv ∈ C :

insert 〈u, v〉 into queue
insert 〈v , u〉 into queue

while queue 6= ∅:
remove an arbitrary element 〈u, v〉 from queue
revise(R, u, v)
if Du changed in the call to revise:

for each w ∈ X \ {u, v} where Rwu is nontrivial:
insert 〈w , u〉 into queue
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AC-3: Discussion

I queue can be an arbitrary data structure that allows for
“insert” and “get” operations (the order of getting the
variable pairs does not affect the result)

 efficient e. g. a stack

I AC-3 has the same effect as AC-1: it enforces arc-consistency

I Proof idea: Invariant of the while loop: If 〈u, v〉 /∈ queue, then
u is arc-consistent with respect to v
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AC-3: Time Complexity

Proposition (Time complexity of AC-3)

Let R be a constraint network with e nontrivial constraints and
maximal domain size k .
Then AC-3 has time complexity O(e · k3).
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AC-3: Time Complexity (Proof)

Proof

Consider a pair 〈u, v〉 for which there is a nontrivial constraint Ruv .
There are e such pairs.

Every time a pair is inserted into the queue (except for the first
time), the domain of the second variable has been reduced before.

This can happen at most k times.

Hence, every pair 〈u, v〉 is inserted into the queue at most k + 1
times  all in all, we have at most O(ek) insert operations.

This restricts the number of while iterations to O(ek), therefore
the revise calls need time at most O(ek) · O(k2) = O(ek3).
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue

(v1, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue

(v1, v3)
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AC-3: Example

Consider the constraint network with three variables v1, v2, v3
with Dv1 = {2, 4} and Dv2 = Dv3 = {2, 5}
and the constraints v3|v1 and v3|v2 (“divides evenly”).

2,4v1 2 v2

2v3 Queue
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3 Path-Consistency
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Beyond Arc-Consistency: Path-Consistency

Recall: Idea of Arc-Consistency:

I For every value of variable u there exists a consistent value for
every other variable v

I Values of u that do not have this property are not allowed

 tightens unary constraint on u

Idea can be extended to three variables (path-consistency):

I For every common valuation of u, v there must be a
consistent value for every other variable w

I Pairs of values for u and v that do not have this property are
not allowed

 tightens binary constraint on u and v
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Path-Consistency: Definition

Definition (Path-Consistent)

Let R = (X ,D,C ) be a constraint network.

(a) Two different variables u, v ∈ X are path-consistent with
respect to a third variable w ∈ X if for all values
du ∈ Du, dv ∈ Dv with 〈u, v〉 ∈ Ruv , there is a value dw ∈ Dw

such that 〈du, dw 〉 ∈ Ruw and 〈dv , dw 〉 ∈ Rvw .

(b) The constraint network R is path-consistent, if for three
different variables u, v , w , it holds that u and v are
path-consistent with respect to w .
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Path-Consistency: Example

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

6=

arc-consistent, but not path-consistent
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Triple of Variables: revise-3

Analogous to revise for arc-consistency:

function revise-3(R, u, v ,w):

(X ,D,C ) := R
for each 〈du, dv 〉 ∈ Ruv :

if there is no dw ∈ Dw with
〈du, dw 〉 ∈ Ruw and 〈dv , dw 〉 ∈ Rvw :
remove 〈du, dv 〉 from Ruv

Input: Constraint network R and three variables u, v , w of R
Effect: Turns u, v path-consistent with respect to w .
All violating pairs of variables are removed from Ruv .

Time complexity: O(k3), where k is the maximal domain size
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Enforcing Path-Consistency: PC-2

Analogous to AC-3 for arc-consistency:

function PC-2(R):

(X ,D,C ) := R
queue := ∅
for each set of two variables {u, v}:

for each w ∈ X \ {u, v}:
insert 〈u, v ,w〉 into queue

while queue 6= ∅:
remove any element 〈u, v ,w〉 from queue
revise-3(R, u, v ,w)
if Ruv changed in the call to revise-3:

for each w ′ ∈ X \ {u, v}:
insert 〈w ′, u, v〉 into queue
insert 〈w ′, v , u〉 into queue
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Path-Consistency: Summary

I Generalization of
arc-consistency (which considers pairs of variables) to
path-consistency (which considers triples of variables)

I Arc-consistency tightens unary constraints

I Path-consistency tightens binary constraints
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4 i -Consistency
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i -Consistency: Idea

I Further generalize previous concepts

I For every valuation of v1, . . . , vi−1 there must exist a
corresponding consistent valuation of every other variable vi

I Otherwise the valuation for v1, . . . , vi−1 (that is not
extendable to vi ) is not allowed

 tightens (i − 1)-ary constraint on v1, . . . , vi−1

 also affects non-binary constraints
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i -Consistency: Definition

Definition (i-Consistent)

Let R = (X ,D,C ) be a constraint network.

(a) A relation RS ∈ C with |S | = i − 1 is i-consistent with respect
to a variable y /∈ S if for every t ∈ RS , there is a value d ∈ Dy

such that t and d are consistent.

(b) The constraint network R is i-consistent if for any consistent
valuation of any i − 1 distinct variables in X , there is a
valuation of any ith variable such that the i values together
satisfy all of the constraints among the i variables.
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i -Consistency: Example

Constraint network R for the 4-queens problem.

v1 v2 v3 v4

1 Q

2

3 Q

4

v1 v2 v3 v4

1 Q

2 Q

3

4 Q

I R is 2-consistent: All single queen placements can be extended

I R is not 3-consistent: There are valid placements of 2 queens
that cannot be extended (left)

I R is not 4-consistent: There are valid placements of 3 queens
that cannot be extended (right)
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Enforcing i -Consistency

I There exist extensions of arc- and path-consistency algorithms
to enforce i-consistency

I We are not going into more detail here
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5 Summary
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Inference: Summary

I Inference: Derivation of additional constraints that are implied
by the given constraints

 equivalent but tighter constraint network

I Useful for search-based solving approaches ( next chapters)

I Trade-off: Number of inferred constraints vs. time complexity
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