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Example: Eight Queens

8 0Z0l0Z0Z
7 Z0Z0Z0l0
6 0ZqZ0Z0Z
5 Z0Z0Z0Zq
4 0l0Z0Z0Z
3 Z0Z0l0Z0
2 qZ0Z0Z0Z
1 Z0Z0ZqZ0

1 2 3 4 5 6 7 8

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

How can we formally specify such a
constraint satisfaction problem?

Are there mathematical operations our algorithms can use?
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Sets

Set: unordered collection of distinguishable objects, where
each object is contained at most once.

Specification:

Explicitly by listing all members, e. g. A = {1, 2, 3}
Implicitly by giving a property that characterizes all members,
e. g. A = {x | x ∈ N and 1 ≤ x ≤ 3}

e ∈ S : e is in the set S (an element or member of the set)

e 6∈ S : e is not in the set S

A ⊆ B: A is a subset of B, i. e., every element of A is an
element of B.

A ⊂ B: A is a proper subset of B, i. e., A ⊆ B and A 6= B.
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Sets

Intersection A ∩ B = {x | x ∈ A and x ∈ B}
Union A ∪ B = {x | x ∈ A or x ∈ B}
Difference A− B = {x | x ∈ A and x 6∈ B}
Empty set ∅ = {}
Sets A and B are disjoint if A ∩ B = ∅.
Size or cardinality |S | of set S : number of elements in S

If a set specifies the possible values for a CSP variable then
we call it the domain associated with the variable.
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Tuples and Cartesian Product

k-tuple: sequence of k objects denoted by (o1, . . . , ok)

Objects in a tuple do not need to be distinct, i. e., an object
can occur more than once.

An object in the tuple is called a component.

(Cartesian) product D1 × D2 × · · · × Dn of sets D1, . . . ,Dn:
set of all n-tuples (o1, . . . , on) such that o1 ∈ D1,. . . ,on ∈ Dn.

Example:
{a, b} × {1, 2, 3} = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}



Sets, tuples and relations Graphs Complexity

Tuples and Cartesian Product

k-tuple: sequence of k objects denoted by (o1, . . . , ok)

Objects in a tuple do not need to be distinct, i. e., an object
can occur more than once.

An object in the tuple is called a component.

(Cartesian) product D1 × D2 × · · · × Dn of sets D1, . . . ,Dn:
set of all n-tuples (o1, . . . , on) such that o1 ∈ D1,. . . ,on ∈ Dn.

Example:
{a, b} × {1, 2, 3} = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}



Sets, tuples and relations Graphs Complexity

Relations

Let S = {x1, . . . , xk} be a set of variables and D1, . . . ,Dk the
domains associated with these variables.

A relation R on S is a subset of D1 × · · · × Dk .

S is called the scope of R (written scope(R)).

k is the arity of R.

For k = 1, 2, 3, R is called a unary, binary, or ternary relation,
respectively.

R = D1 × · · · × Dk is the universal relation.

If we want to make the scope S of a relation explicit,
we often write RS .
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Representing Relations

For the examples, we use variables x1 and x2 with associated
domains D1 = {1, 2} and D2 = {2, 4, 6}.

Explicitly: R = {(1, 2), (1, 6), (2, 4), (2, 6)}

Implicitly: R = {(a, b) | a ∈ D1, b ∈ D2, b = 2a or b = 6}

Table representation: x1 x2
1 2
1 6
2 4
2 6
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Additional Representation for Binary Relations

Matrix representation:
Matrix with entry 1 if tuple is in the relation and entry 0 otherwise.

1 0 1

0 1 1


1

2

2 4 6
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Operations on Relations

For two relations R and R ′ on the same scope S,

the union R ∪ R ′,

intersection R ∩ R ′, and

difference R − R ′

are defined by the respective set operations.

The scope of the result is S.
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Union, Intersection and Difference of Relations – Examples

Variables x1, x2, x3
Domains

D1 = {1, 2, 3}
D2 = {a, b}
D3 = {2, 4, 6}

R x1 x2 x3
1 a 4
2 b 2
2 b 6
3 a 4

R ′ x1 x2 x3
1 a 4
1 a 6
2 b 2

R ∪ R ′

x1 x2 x3
1 a 4
1 a 6
2 b 2
2 b 6
3 a 4

R ∩ R ′

x1 x2 x3
1 a 4
2 b 2

R − R ′

x1 x2 x3
2 b 6
3 a 4
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Operations on Relations – Selection

For a relation R, let x be a variable from the scope of R and let e
be a value from the associated domain.

The selection σx=e(R) is the subset of R that contains all elements
where the component for x is e.

R
x1 x2 x3
1 a 4
2 a 2
2 b 6
3 a 4

σx1=2(R)
x1 x2 x3
2 a 2
2 b 6

The scope of the resulting relation is the scope of R.
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Operations on Relations – Selection

We use the abbreviations σx1=e1,...,xn=en(R) and
σ(x1,...,xn)=(e1,...,en)(R) for σx1=e1(. . . (σxn=en(R)) . . . ).

R
x1 x2 x3
1 a 4
2 a 2
2 a 6
2 b 6
3 a 4

σx1=2,x3=6(R)
x1 x2 x3
2 a 6
2 b 6
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Operations on Relations – Projection

For a relation R and Y ⊆ scope(R), the projection πY (R) with
scope Y consists of all tuples that can be constructed from a tuple
in R by removing all components for variables that are not in Y .

R
x1 x2 x3
1 a 2
1 a 4
2 b 6
3 a 4

π{x1,x2}(R)

x1 x2
1 a
2 b
3 a

Put simply: In the table representation, remove all columns for
variables that are not in Y . Afterwards, remove duplicate rows.
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Operations on Relations – Join

For two relations R and R ′ the join operator R 1 R ′ combines
each tuple from R with all tuples from R ′ that agree on the
common variables.

R
x1 x2 x3
1 a 2
1 a 6
3 a 4
3 b 4

R ′

x1 x3 x4
1 2 ∗
1 2 −
2 4 +
3 4 +

R 1 R ′

x1 x2 x3 x4
1 a 2 ∗
1 a 2 −
3 a 4 +
3 b 4 +

The scope of R 1 R ′ is scope(R) ∪ scope(R ′).
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Example: Eight Queens

8 0Z0l0Z0Z
7 Z0Z0Z0l0
6 0ZqZ0Z0Z
5 Z0Z0Z0Zq
4 0l0Z0Z0Z
3 Z0Z0l0Z0
2 qZ0Z0Z0Z
1 Z0Z0ZqZ0

1 2 3 4 5 6 7 8

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

Formally, the CSP is given by

A set of variables V = {x1, x2, . . . , x8}
Associated domains Di = {1, . . . , 8} for 1 ≤ i ≤ 8

For 1 ≤ i < j ≤ 8 a constraint
Rij = {(p, q) | p 6= q and |j − i | 6= |p − q|}
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Questions on Sets, Tuples, Relations, . . .

Questions?
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Graphs
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Undirected Graphs I

An undirected graph G = (V ,E ) is given by

a finite set V of vertices (or nodes), and

a finite set E ⊆ {{u, v} | u, v ∈ V } of edges (or arcs).

For e = {u, v} ∈ E , we say that e connects v and v ′ and that
u and v are adjacent or neighbors. The degree d(v) of node v is
the number of adjacent neighbors.

V = ({n1, n2, n3, n4, n5},
{{n1, n2}, {n1, n3}, {n2, n3}, {n2, n4}, {n3, n4}, {n4, n5}, {n5}})

n1 n2

n3n4n5
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Undirected Graphs II

Path: Sequence e1, e2, . . . , ek of edges such that ei and ei+1

share an end point (for 1 ≤ i < k)

Alternatively: Path as sequence v0, . . . , vk of vertices, where
{vi , vi+1} ∈ E for 0 ≤ i < k .

In path v0, . . . , vk , v0 is the start vertex, vk the end vertex
and the path has length k .

A path is simple if no vertex occurs more than once.

A cycle is a path whose start and end vertices are the same.

A cycle is simple if without the end vertex it is a simple path.
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Undirected Graphs III

An undirected graph without any cycles is a tree.

If there is a path between any two edges, the graph is
connected.

A graph is complete if any two nodes are adjacent.

For S ⊆ V , the subgraph relative to S is
GS = {S , {{u, v} | {u, v} ∈ E and {u, v} ⊆ S}.
A clique in a graph is a complete subgraph.

n1 n2

n3n4n5

The subgraph relative to {n2, n3, n4} is a clique.
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Directed Graphs I

A directed graph (or digraph) G = (V ,E ) is given by

a finite set V of vertices (or nodes), and

a finite set E ⊆ {(u, v) | u, v ∈ V } of edges (or arcs).

Edge e = (u, v) ∈ E (also written u → v) is directed from start
vertex u to end vertex v .

V = ({n1, n2, n3, n4, n5},
{(n1, n2), (n2, n1), (n2, n3), (n2, n4), (n1, n3), (n4, n5), (n5, n5)})

n1 n2

n3n4n5
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Directed Graphs II

Outdegree of a node u: number of edges with start vertex u

Indegree of a node u: number of edges with end vertex u

Node u is a parent of node v if there is an edge (u, v).
The set of all parents of v is denoted pa(v).

Node u is a child of node v if there is an edge (v , u).
The set of all children of v is denoted ch(v).

Directed path: Sequence e1, e2, . . . , ek of edges such that end
vertex of ei is start vertex of ei+1 (for 1 ≤ i < k)

A directed cycle is a directed path whose start and end
vertices are the same.

A digraph is acyclic if it has no directed cycles.

A digraph is strongly connected if for each two difference
vertices u and v there is a directed path from u to v .
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Questions on Graphs

Questions?
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Asymptotic Runtime Analysis

How fast is a given algorithm?

For an algorithm, consider worst-case running time T (n) over
all inputs of fixed size n.

Evaluate algorithms by the growth rate of T (n) with
increasing n.

O(g(n)) = {f (n) | there exist positive constants c and n0
O(g(n)) = {f (n) | s.t. 0 ≤ f (n) ≤ cg(n) for all n > n0}
Examples: n2 + 3n ∈ O(n2) and O(n3) ⊂ O(2n)

o(g(n)) = {f (n) | for any positive constant c exists an n0
O(g(n)) = {f (n) | s.t. 0 ≤ f (n) ≤ cg(n) for all n > n0}
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Asymptotic Runtime Analysis – More Roughly

How fast is a given algorithm?
(Please do not tell me too many details. . . )

Polynomial of degree d :
function f (n) =

∑d
i=1 ain

i , where ai are constants.

An algorithm is tractable if T (n) is bound by a polynomial,
i. e., if T (n) ∈ O(nk) for some k .
Otherwise it is intractable.

For a constant a, f (n) = an is an exponential function.

For a > 0 it holds for all b that limn→∞
nb

an = 0.
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Complexity of Problems

How fast can the best algorithm for a problem class be?

If there is a tractable algorithm, the problem class is tractable.

NP-complete problem classes are believed to require
exponential runtime in the worst case.

For NP-complete problem classes, a potential solution can be
verified in polynomial time.

Bad news: Constraint Satisfaction Problems are NP-complete.

There is probably no tractable algorithm.
Idea 1: Find algorithms that are sufficiently fast in
Idea 1: most of the cases
Idea 2: Identify tractable subclasses
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Questions on Complexity

Questions?
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