Seminar: Search and Optimization
2. Mathematical Background

Gabi Roger
Universitat Basel

September 25, 2014

Sets, tuples and relations

900000000000 0000

Sets, tuples and relations

Sets, tuples and relations
0@00000000000000

Example: Eight Queens

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

1 2 3 4 5 6 7 8

Sets, tuples and relations

000000000000 0000

Example: Eight Queens

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

How can we formally specify such a
constraint satisfaction problem?

Are there mathematical operations our algorithms can use?

Sets, tuples and relations
00®0000000000000

Sets

@ Set: unordered collection of distinguishable objects, where
each object is contained at most once.
@ Specification:
o Explicitly by listing all members, e.g. A= {1,2,3}
o Implicitly by giving a property that characterizes all members,
eg A={x|xeNand1l<x<3}

Sets, tuples and relations
00®0000000000000

Sets

@ Set: unordered collection of distinguishable objects, where
each object is contained at most once.
@ Specification:
o Explicitly by listing all members, e.g. A= {1,2,3}
o Implicitly by giving a property that characterizes all members,
eg A={x|xeNand1l<x<3}

@ ec S:eisin the set S (an element or member of the set)
@ e¢ S:eisnotintheset$S

Sets, tuples and relations
00®0000000000000

Sets

Set: unordered collection of distinguishable objects, where
each object is contained at most once.

Specification:
o Explicitly by listing all members, e.g. A= {1,2,3}
o Implicitly by giving a property that characterizes all members,
eg A={x|xeNand1l<x<3}

e € S: eisin the set S (an element or member of the set)
e¢ S:eisnotinthesetS

A C B: Ais a subset of B, i.e., every element of A is an
element of B.

@ AC B: Ais a proper subset of B, i.e., AC B and A# B.

Sets, tuples and relations
000®000000000000

Sets

@ Intersection ANB = {x|x € Aand x € B}
e Union AUB ={x|x€Aorxe B}
e Difference A— B={x|x € Aand x ¢ B}

Sets, tuples and relations
000®000000000000

Sets

@ Intersection ANB = {x|x € Aand x € B}
e Union AUB ={x|x€Aorxe B}

e Difference A— B={x|x € Aand x ¢ B}
e Empty set) = {}

@ Sets A and B are disjoint if AN B = {).

e Size or cardinality |S| of set S: number of elements in S

Sets, tuples and relations
000®000000000000

Sets

@ Intersection ANB = {x|x € Aand x € B}

e Union AUB ={x|x€Aorxe B}

e Difference A— B={x|x € Aand x ¢ B}

e Empty set) = {}

@ Sets A and B are disjoint if AN B = {).

e Size or cardinality |S| of set S: number of elements in S

o If a set specifies the possible values for a CSP variable then
we call it the domain associated with the variable.

Sets, tuples and relations
0000®00000000000

Tuples and Cartesian Product

@ k-tuple: sequence of k objects denoted by (o1, ..., 0k)

@ Objects in a tuple do not need to be distinct, i.e., an object
can occur more than once.

@ An object in the tuple is called a component.

Sets, tuples and relations
0000®00000000000

Tuples and Cartesian Product

@ k-tuple: sequence of k objects denoted by (o1, ..., 0k)

@ Objects in a tuple do not need to be distinct, i.e., an object
can occur more than once.

@ An object in the tuple is called a component.

o (Cartesian) product Dy x Dy x -+ x D, of sets Dy, ..., Dp:
set of all n-tuples (o1, ...,0,) such that o; € Dy,...,0, € Dp.
o Example:

{a, b} x {1,2,3} ={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}

Sets, tuples and relations
00000®0000000000

Relations

Let S = {x1,...,xk} be a set of variables and Dy, ..., Dy the
domains associated with these variables.

A relation R on S is a subset of Dy x - -+ x Dy.
S is called the scope of R (written scope(R)).
k is the arity of R.

For k =1,2,3, R is called a unary, binary, or ternary relation,
respectively.

R = Dy x --- x Dy is the universal relation.

If we want to make the scope S of a relation explicit,
we often write Rs.

Sets, tuples and relations
000000e000000000

Representing Relations

For the examples, we use variables x; and x» with associated
domains Dy = {1,2} and Dy = {2.4,6}.

o Explicitly: R = {(1,2),(1,6), (2,4), (2,6)}
o Implicitly: R={(a,b) |a€ D1,b € Da,b=2ao0r b=6}

@ Table representation: x3 | xo

NN = =
S R~ON

Sets, tuples and relations
0000000e00000000

Additional Representation for Binary Relations

Matrix representation:
Matrix with entry 1 if tuple is in the relation and entry 0 otherwise.

2 46

1 1 01
2 011

Sets, tuples and relations
00000000e0000000

Operations on Relations

For two relations R and R’ on the same scope S,
@ the union RU R/,
@ intersection RN R’, and
o difference R — R’

are defined by the respective set operations.

The scope of the result is S.

Sets, tuples and relations
000000000e000000

Union, Intersection and Difference of Relations — Examples

Variables X1,X2,X3

Domains

D, =1{1,2,3}

D2 = {a, b}

D3 = {27476}

RUR’ RNR R—- R

X1 X2 | X3 X1 | X2 | X3 X1 | X2 | X3
1| al 4 1| al 4 2| b |6
1] a6 2|1 b | 2 3 |1al|4
2| b | 2

2| b | 6
3| al 4

Sets, tuples and relations

000000000 0e00000

Operations on Relations — Selection

For a relation R, let x be a variable from the scope of R and let e
be a value from the associated domain.

The selection o,—(R) is the subset of R that contains all elements
where the component for x is e.

R 0 -2(R)
x1 | xo | X3

21 a| 2

2| b | 6

The scope of the resulting relation is the scope of R.

Sets, tuples and relations
00000000000e0000

Operations on Relations — Selection

We use the abbreviations o, —¢, . x,—e,(R) and
(st i) =(e1.en) () FOF Oxy=er (- (0p=y (R)) -).

R Ux1:2,X3:6(R)
X1 | X2 | X3 X1 | X2 | X3
1| al| 4 2| a| 6
2| a| 2 2 | b | 6
2|1 a| 6
2| b | 6
3|1 a| 4

Sets, tuples and relations

000000000000 e000

Operations on Relations — Projection

For a relation R and Y C scope(R), the projection my(R) with
scope Y consists of all tuples that can be constructed from a tuple
in R by removing all components for variables that are not in Y.

R T{x1,%0} (R)
X1 | X2
1| a
2 | b
3| a

Put simply: In the table representation, remove all columns for
variables that are not in Y. Afterwards, remove duplicate rows.

Sets, tuples and relations
0000000000000 e00

Operations on Relations — Join

For two relations R and R’ the join operator R X R’ combines
each tuple from R with all tuples from R’ that agree on the

common variables.

R R’ R X R’
X1 ‘ X2 ‘ X3 ‘ X4
11 a] 2| x
1 1a| 2| -
3 |al 4|+
3| b | 4|+

The scope of R X R’ is scope(R) U scope(R').

Sets, tuples and relations
00000000000000e0

Example: Eight Queens

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

Formally, the CSP is given by
o A set of variables V = {x1,x2,...,xg}
@ Associated domains D; = {1,...,8} for 1 </ <8

@ For 1 </ < j <8 a constraint
Ri={(p,q) | p# qand |j —i| #|p—ql}

Sets, tuples and relations
000000000000000e

Questions on Sets, Tuples, Relations, ...

Questions?

OOOOOOO

Graphs

Undirected Graphs |

An undirected graph G = (V, E) is given by
@ a finite set V of vertices (or nodes), and
o a finite set E C {{u,v} | u,v € V} of edges (or arcs).

For e = {u, v} € E, we say that e connects v and v/ and that
u and v are adjacent or neighbors. The degree d(v) of node v is
the number of adjacent neighbors.

V= ({nla nz, n3, N4, n5}7

{{nlvn2}7{n1an3}a{n27n3}7{n27n4}7{n3?n4}7{n4an5}a{n5}})
oS
S
(1)—(e)—3)

Undirected Graphs Il

e Path: Sequence e, e, ..., e, of edges such that e and e
share an end point (for 1 </ < k)

@ Alternatively: Path as sequence vy, ..., vk of vertices, where
{vi,viy1} € E for 0 < i < k.

@ In path vp,..., vk, vy is the start vertex, v the end vertex
and the path has length k.

Undirected Graphs Il

Path: Sequence e, e,.. ., e of edges such that e; and e
share an end point (for 1 </ < k)

Alternatively: Path as sequence vy, . .., vk of vertices, where
{vi,viy1} € E for 0 < i < k.

In path vp, ..., vk, W is the start vertex, vx the end vertex
and the path has length k.

A path is simple if no vertex occurs more than once.
A cycle is a path whose start and end vertices are the same.

A cycle is simple if without the end vertex it is a simple path.

Undirected Graphs Il

An undirected graph without any cycles is a tree.

If there is a path between any two edges, the graph is
connected.

A graph is complete if any two nodes are adjacent.
For S C V, the subgraph relative to S is

Gs ={S,{{u,v} | {u,v} € E and {u,v} C S}.

A clique in a graph is a complete subgraph.

B

The subgraph relative to {ny, n3, ns} is a clique.

Directed Graphs |

A directed graph (or digraph) G = (V, E) is given by
@ a finite set V of vertices (or nodes), and
@ a finite set E C {(u,v) | u,v € V} of edges (or arcs).

Edge e = (u, v) € E (also written u — v) is directed from start
vertex u to end vertex v.

V = ({n1,n2, n3, na, ns},
{(n1, n2), (n2, n1), (n2, n3), (n2, na), (1, n3), (na, ns), (ns, ns)})

oS0

@@‘@

Directed Graphs Il

@ Outdegree of a node u: number of edges with start vertex u
@ Indegree of a node u: number of edges with end vertex u

e Node v is a parent of node v if there is an edge (u, v).
The set of all parents of v is denoted pa(v).

o Node u is a child of node v if there is an edge (v, u).
The set of all children of v is denoted ch(v).

Directed Graphs Il

@ Outdegree of a node u: number of edges with start vertex u
@ Indegree of a node u: number of edges with end vertex u

e Node v is a parent of node v if there is an edge (u, v).
The set of all parents of v is denoted pa(v).

o Node u is a child of node v if there is an edge (v, u).
The set of all children of v is denoted ch(v).

@ Directed path: Sequence e1, e, ..., e of edges such that end
vertex of e; is start vertex of ej1 (for 1 </ < k)

@ A directed cycle is a directed path whose start and end
vertices are the same.

Directed Graphs Il

Outdegree of a node u: number of edges with start vertex u
Indegree of a node u: number of edges with end vertex u

Node v is a parent of node v if there is an edge (u, v).
The set of all parents of v is denoted pa(v).

Node v is a child of node v if there is an edge (v, u).
The set of all children of v is denoted ch(v).

Directed path: Sequence e1, ey, ..., e of edges such that end
vertex of e; is start vertex of ej1 (for 1 </ < k)

A directed cycle is a directed path whose start and end
vertices are the same.

A digraph is acyclic if it has no directed cycles.

A digraph is strongly connected if for each two difference
vertices u and v there is a directed path from v to v.

Questions on Graphs

Questions?

Complexity

Complexity
0®000

Asymptotic Runtime Analysis

How fast is a given algorithm?

e For an algorithm, consider worst-case running time T(n) over
all inputs of fixed size n.

e Evaluate algorithms by the growth rate of T(n) with
increasing n.

Complexity
0®000

Asymptotic Runtime Analysis

How fast is a given algorithm?
e For an algorithm, consider worst-case running time T(n) over
all inputs of fixed size n.

e Evaluate algorithms by the growth rate of T(n) with
increasing n.

e O(g(n)) ={f(n)| there exist positive constants ¢ and ng
s.t. 0 < f(n) < cg(n) for all n > ng}
Examples: n? +3n € O(n?) and O(n®) C O(2")

Complexity
0®000

Asymptotic Runtime Analysis

How fast is a given algorithm?
e For an algorithm, consider worst-case running time T(n) over
all inputs of fixed size n.

e Evaluate algorithms by the growth rate of T(n) with
increasing n.

e O(g(n)) ={f(n)| there exist positive constants ¢ and ng
s.t. 0 < f(n) < cg(n) for all n > ng}
Examples: n? +3n € O(n?) and O(n®) C O(2")
@ o(g(n)) ={f(n)| for any positive constant c exists an ng
s.t. 0 < f(n) < cg(n) for all n > ng}

Complexity
00e00

Asymptotic Runtime Analysis — More Roughly

How fast is a given algorithm?
(Please do not tell me too many details. . .)
@ Polynomial of degree d:
function f(n) = S°%, a;n’, where a; are constants.
@ An algorithm is tractable if T(n) is bound by a polynomial,
i.e., if T(n) € O(nk) for some k.
Otherwise it is intractable.

Complexity
00e00

Asymptotic Runtime Analysis — More Roughly

How fast is a given algorithm?
(Please do not tell me too many details. . .)

@ Polynomial of degree d:
function f(n) = S°%, a;n’, where a; are constants.

@ An algorithm is tractable if T(n) is bound by a polynomial,
i.e., if T(n) € O(nk) for some k.
Otherwise it is intractable.

o For a constant a, f(n) = a" is an exponential function.

o For a> 0 it holds for all b that lim, ., % = 0.

Complexity
000®0

Complexity of Problems

How fast can the best algorithm for a problem class be?
o If there is a tractable algorithm, the problem class is tractable.
@ NP-complete problem classes are believed to require
exponential runtime in the worst case.

@ For NP-complete problem classes, a potential solution can be
verified in polynomial time.

Complexity
000®0

Complexity of Problems

How fast can the best algorithm for a problem class be?
o If there is a tractable algorithm, the problem class is tractable.

@ NP-complete problem classes are believed to require
exponential runtime in the worst case.

@ For NP-complete problem classes, a potential solution can be
verified in polynomial time.

@ Bad news: Constraint Satisfaction Problems are NP-complete.

e There is probably no tractable algorithm.

o Idea 1: Find algorithms that are sufficiently fast in
most of the cases

o Idea 2: Identify tractable subclasses

Complexity
ooooe

Questions on Complexity

Questions?

	Sets, tuples and relations
	Graphs
	Complexity

