Seminar: Search and Optimization

2. Mathematical Background

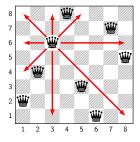
Gabi Röger

Universität Basel

September 25, 2014

Sets, tuples and relations

Example: Eight Queens



Variables:

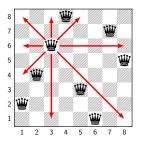
One variable for each row

Domain of each variable: possible positions in the row

Constraints:

No two queens may threaten each other.

Example: Eight Queens



Variables:

One variable for each row

Domain of each variable: possible positions in the row

Constraints:

No two queens may threaten each other.

How can we formally specify such a constraint satisfaction problem?

Are there mathematical operations our algorithms can use?

- Set: unordered collection of distinguishable objects, where each object is contained at most once.
- Specification:
 - Explicitly by listing all members, e.g. $A = \{1, 2, 3\}$
 - Implicitly by giving a property that characterizes all members, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \leq x \leq 3\}$

Sets, tuples and relations

- Set: unordered collection of distinguishable objects, where each object is contained at most once.
- Specification:
 - Explicitly by listing all members, e.g. $A = \{1, 2, 3\}$
 - Implicitly by giving a property that characterizes all members, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \leq x \leq 3\}$
- $e \in S$: e is in the set S (an element or member of the set)
- $e \notin S$: e is not in the set S

- Set: unordered collection of distinguishable objects, where each object is contained at most once.
- Specification:
 - Explicitly by listing all members, e.g. $A = \{1, 2, 3\}$
 - Implicitly by giving a property that characterizes all members, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \leq x \leq 3\}$
- $e \in S$: e is in the set S (an element or member of the set)
- $e \notin S$: e is not in the set S
- $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B.
- $A \subset B$: A is a proper subset of B, i. e., $A \subseteq B$ and $A \neq B$.

- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Difference $A B = \{x \mid x \in A \text{ and } x \notin B\}$

- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Difference $A B = \{x \mid x \in A \text{ and } x \notin B\}$
- Empty set ∅ = {}
- Sets A and B are disjoint if $A \cap B = \emptyset$.
- Size or cardinality |S| of set S: number of elements in S

- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Difference $A B = \{x \mid x \in A \text{ and } x \notin B\}$
- Empty set $\emptyset = \{\}$
- Sets A and B are disjoint if $A \cap B = \emptyset$.
- Size or cardinality |S| of set S: number of elements in S
- If a set specifies the possible values for a CSP variable then we call it the domain associated with the variable.

Tuples and Cartesian Product

- k-tuple: sequence of k objects denoted by (o_1, \ldots, o_k)
- Objects in a tuple do not need to be distinct, i. e., an object can occur more than once.
- An object in the tuple is called a component.

Sets, tuples and relations

- k-tuple: sequence of k objects denoted by (o_1, \ldots, o_k)
- Objects in a tuple do not need to be distinct, i. e., an object can occur more than once.
- An object in the tuple is called a component.
- (Cartesian) product $D_1 \times D_2 \times \cdots \times D_n$ of sets D_1, \dots, D_n : set of all n-tuples (o_1, \dots, o_n) such that $o_1 \in D_1, \dots, o_n \in D_n$.
- Example: $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Relations

- Let $S = \{x_1, \dots, x_k\}$ be a set of variables and D_1, \dots, D_k the domains associated with these variables.
- A relation R on S is a subset of $D_1 \times \cdots \times D_k$.
- S is called the scope of R (written scope(R)).
- k is the arity of R.
- For k = 1, 2, 3, R is called a unary, binary, or ternary relation, respectively.
- $R = D_1 \times \cdots \times D_k$ is the universal relation.
- If we want to make the scope S of a relation explicit, we often write R_S .

Representing Relations

For the examples, we use variables x_1 and x_2 with associated domains $D_1 = \{1, 2\}$ and $D_2 = \{2, 4, 6\}$.

- Explicitly: $R = \{(1,2), (1,6), (2,4), (2,6)\}$
- Implicitly: $R = \{(a, b) \mid a \in D_1, b \in D_2, b = 2a \text{ or } b = 6\}$

• Table representation:
$$\begin{array}{c|c} x_1 & x_2 \\ \hline 1 & 2 \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 2 & 6 \\ \hline \end{array}$$

Additional Representation for Binary Relations

Matrix representation:

Matrix with entry 1 if tuple is in the relation and entry 0 otherwise.

Operations on Relations

For two relations R and R' on the same scope S,

- the union $R \cup R'$,
- intersection $R \cap R'$, and
- difference R R'

are defined by the respective set operations.

The scope of the result is S.

Union, Intersection and Difference of Relations – Examples

Variables x_1, x_2, x_3 Domains

$$D_1 = \{1, 2, 3\}$$

 $D_2 = \{a, b\}$

$$D_3 = \{2, 4, 6\}$$

R	x_1	x ₂	<i>x</i> ₃
	1	а	4
	2	Ь	2
	2	Ь	6

$R \cup R'$			
	x_1	<i>x</i> ₂	<i>X</i> 3
	1	a	4
	1	a	6
	2	Ь	2
	2	Ь	6
	3	a	4

$$\begin{array}{c|ccc}
R \cap R' \\
\hline
x_1 & x_2 & x_3 \\
\hline
1 & a & 4 \\
2 & b & 2
\end{array}$$

R - R'			
x_1	<i>x</i> ₂	<i>X</i> 3	
2	b	6	
3	a	4	

Operations on Relations – Selection

For a relation R, let x be a variable from the scope of R and let e be a value from the associated domain.

The selection $\sigma_{x=e}(R)$ is the subset of R that contains all elements where the component for x is e.

		R	
λ	1	<i>x</i> ₂	<i>X</i> 3
	1	а	4
2	2	a	2
2	2	Ь	6
	3	a	4

$\sigma_{x_1=2}(R)$				
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3		
2	a	2		
2	Ь	6		
	•	ı		

The scope of the resulting relation is the scope of R.

Operations on Relations – Selection

We use the abbreviations $\sigma_{x_1=e_1,...,x_n=e_n}(R)$ and $\sigma_{(x_1,...,x_n)=(e_1,...,e_n)}(R)$ for $\sigma_{x_1=e_1}(...(\sigma_{x_n=e_n}(R))...)$.

	Λ	
x_1	<i>x</i> ₂	<i>X</i> 3
1	a	4
2	a	2
2	a	6
2	Ь	6
3	a	4

D

$\sigma_{x_1=2,x_3=6}(R)$				
<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3		
2	а	6		
2	b	6		
	l	ı		

Operations on Relations – Projection

For a relation R and $Y \subseteq scope(R)$, the projection $\pi_Y(R)$ with scope Y consists of all tuples that can be constructed from a tuple in R by removing all components for variables that are not in Y.

R			$\pi_{\{j\}}$	x_1, x_1	$_{2}(R)$
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	>	< 1	<i>x</i> ₂
1	а	2		1	а
1	a	4	:	2	Ь
2	Ь	6		3	а
3	a	4			

Put simply: In the table representation, remove all columns for variables that are not in Y. Afterwards, remove duplicate rows.

Operations on Relations – Join

For two relations R and R' the join operator $R \bowtie R'$ combines each tuple from R with all tuples from R' that agree on the common variables.

R	
<i>x</i> ₂	<i>x</i> ₃
a	2
a	6
a	4
b	4
	a a

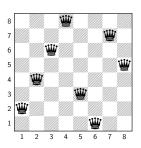
x_1	<i>X</i> 3	<i>X</i> 4		
1	2	*		
1	2	_		
2	4	+		
3	4	+		

R'

$R \bowtie R'$				
x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	
1	а	2	*	
1	a	2	_	
3	а	4	+	
3	b	4	+	

The scope of $R \bowtie R'$ is $scope(R) \cup scope(R')$.

Example: Eight Queens



Variables:

One variable for each row

Domain of each variable: possible positions in the row

Constraints:

No two queens may threaten each other.

Formally, the CSP is given by

- A set of variables $V = \{x_1, x_2, \dots, x_8\}$
- Associated domains $D_i = \{1, \dots, 8\}$ for $1 \le i \le 8$
- For $1 \le i < j \le 8$ a constraint $R_{ij} = \{(p,q) \mid p \ne q \text{ and } |j-i| \ne |p-q|\}$

Questions on Sets, Tuples, Relations, ...

Questions?

Graphs

Undirected Graphs I

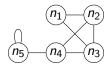
An undirected graph G = (V, E) is given by

- a finite set V of vertices (or nodes), and
- a finite set $E \subseteq \{\{u, v\} \mid u, v \in V\}$ of edges (or arcs).

For $e = \{u, v\} \in E$, we say that e connects v and v' and that u and v are adjacent or neighbors. The degree d(v) of node v is the number of adjacent neighbors.

$$V = (\{n_1, n_2, n_3, n_4, n_5\},$$

$$\{\{n_1, n_2\}, \{n_1, n_3\}, \{n_2, n_3\}, \{n_2, n_4\}, \{n_3, n_4\}, \{n_4, n_5\}, \{n_5\}\})$$



Undirected Graphs II

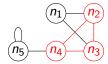
- Path: Sequence e_1, e_2, \ldots, e_k of edges such that e_i and e_{i+1} share an end point (for $1 \le i < k$)
- Alternatively: Path as sequence $v_0, ..., v_k$ of vertices, where $\{v_i, v_{i+1}\} \in E$ for $0 \le i < k$.
- In path v_0, \ldots, v_k , v_0 is the start vertex, v_k the end vertex and the path has length k.

Undirected Graphs II

- Path: Sequence e_1, e_2, \ldots, e_k of edges such that e_i and e_{i+1} share an end point (for $1 \le i < k$)
- Alternatively: Path as sequence $v_0, ..., v_k$ of vertices, where $\{v_i, v_{i+1}\} \in E$ for $0 \le i < k$.
- In path v_0, \ldots, v_k , v_0 is the start vertex, v_k the end vertex and the path has length k.
- A path is simple if no vertex occurs more than once.
- A cycle is a path whose start and end vertices are the same.
- A cycle is simple if without the end vertex it is a simple path.

Undirected Graphs III

- An undirected graph without any cycles is a tree.
- If there is a path between any two edges, the graph is connected.
- A graph is complete if any two nodes are adjacent.
- For $S \subseteq V$, the subgraph relative to S is $G_S = \{S, \{\{u, v\} \mid \{u, v\} \in E \text{ and } \{u, v\} \subseteq S\}.$
- A clique in a graph is a complete subgraph.



The subgraph relative to $\{n_2, n_3, n_4\}$ is a clique.

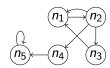
Directed Graphs I

A directed graph (or digraph) G = (V, E) is given by

- ullet a finite set V of vertices (or nodes), and
- a finite set $E \subseteq \{(u, v) \mid u, v \in V\}$ of edges (or arcs).

Edge $e = (u, v) \in E$ (also written $u \to v$) is directed from start vertex u to end vertex v.

$$V = (\{n_1, n_2, n_3, n_4, n_5\}, \{(n_1, n_2), (n_2, n_1), (n_2, n_3), (n_2, n_4), (n_1, n_3), (n_4, n_5), (n_5, n_5)\})$$



Directed Graphs II

- ullet Outdegree of a node u: number of edges with start vertex u
- Indegree of a node u: number of edges with end vertex u
- Node u is a parent of node v if there is an edge (u, v). The set of all parents of v is denoted pa(v).
- Node u is a child of node v if there is an edge (v, u). The set of all children of v is denoted ch(v).

Directed Graphs II

- ullet Outdegree of a node u: number of edges with start vertex u
- Indegree of a node u: number of edges with end vertex u
- Node u is a parent of node v if there is an edge (u, v). The set of all parents of v is denoted pa(v).
- Node u is a child of node v if there is an edge (v, u). The set of all children of v is denoted ch(v).
- Directed path: Sequence e_1, e_2, \dots, e_k of edges such that end vertex of e_i is start vertex of e_{i+1} (for $1 \le i < k$)
- A directed cycle is a directed path whose start and end vertices are the same.

Directed Graphs II

- Outdegree of a node u: number of edges with start vertex u
- Indegree of a node u: number of edges with end vertex u
- Node u is a parent of node v if there is an edge (u, v). The set of all parents of v is denoted pa(v).
- Node u is a child of node v if there is an edge (v, u). The set of all children of v is denoted ch(v).
- Directed path: Sequence e_1, e_2, \dots, e_k of edges such that end vertex of e_i is start vertex of e_{i+1} (for $1 \le i < k$)
- A directed cycle is a directed path whose start and end vertices are the same.
- A digraph is acyclic if it has no directed cycles.
- A digraph is strongly connected if for each two difference vertices u and v there is a directed path from u to v.

Complexity 00000

Questions?

Complexity

Asymptotic Runtime Analysis

How fast is a given algorithm?

- For an algorithm, consider worst-case running time T(n) over all inputs of fixed size n.
- Evaluate algorithms by the growth rate of T(n) with increasing n.

Asymptotic Runtime Analysis

How fast is a given algorithm?

- For an algorithm, consider worst-case running time T(n) over all inputs of fixed size n.
- Evaluate algorithms by the growth rate of T(n) with increasing n.
- $O(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0$ s.t. $0 \le f(n) \le cg(n) \text{ for all } n > n_0\}$ Examples: $n^2 + 3n \in O(n^2)$ and $O(n^3) \subset O(2^n)$

Asymptotic Runtime Analysis

How fast is a given algorithm?

- For an algorithm, consider worst-case running time T(n) over all inputs of fixed size n.
- Evaluate algorithms by the growth rate of T(n) with increasing n.
- $O(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0$ s.t. $0 \le f(n) \le cg(n) \text{ for all } n > n_0 \}$ Examples: $n^2 + 3n \in O(n^2)$ and $O(n^3) \subset O(2^n)$
- $o(g(n)) = \{f(n) \mid \text{ for any positive constant } c \text{ exists an } n_0 \text{ s.t. } 0 \le f(n) \le cg(n) \text{ for all } n > n_0\}$

Asymptotic Runtime Analysis – More Roughly

How fast is a given algorithm? (Please do not tell me too many details...)

- Polynomial of degree d: function $f(n) = \sum_{i=1}^{d} a_i n^i$, where a_i are constants.
- An algorithm is tractable if T(n) is bound by a polynomial, i. e., if T(n) ∈ O(n^k) for some k.
 Otherwise it is intractable.

Asymptotic Runtime Analysis – More Roughly

How fast is a given algorithm? (Please do not tell me too many details...)

- Polynomial of degree d: function $f(n) = \sum_{i=1}^{d} a_i n^i$, where a_i are constants.
- An algorithm is tractable if T(n) is bound by a polynomial, i. e., if T(n) ∈ O(n^k) for some k.
 Otherwise it is intractable.
- For a constant a, $f(n) = a^n$ is an exponential function.
- For a > 0 it holds for all b that $\lim_{n \to \infty} \frac{n^b}{a^n} = 0$.

Complexity of Problems

How fast can the best algorithm for a problem class be?

- If there is a tractable algorithm, the problem class is tractable.
- NP-complete problem classes are believed to require exponential runtime in the worst case.
- For NP-complete problem classes, a potential solution can be verified in polynomial time.

Complexity of Problems

How fast can the best algorithm for a problem class be?

- If there is a tractable algorithm, the problem class is tractable.
- NP-complete problem classes are believed to require exponential runtime in the worst case.
- For NP-complete problem classes, a potential solution can be verified in polynomial time.
- Bad news: Constraint Satisfaction Problems are NP-complete.
 - There is probably no tractable algorithm.
 - Idea 1: Find algorithms that are sufficiently fast in most of the cases
 - Idea 2: Identify tractable subclasses

Questions on Complexity

Questions?