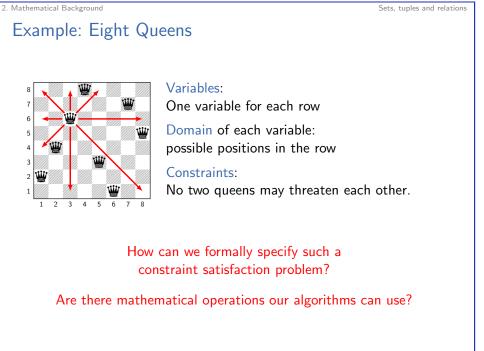
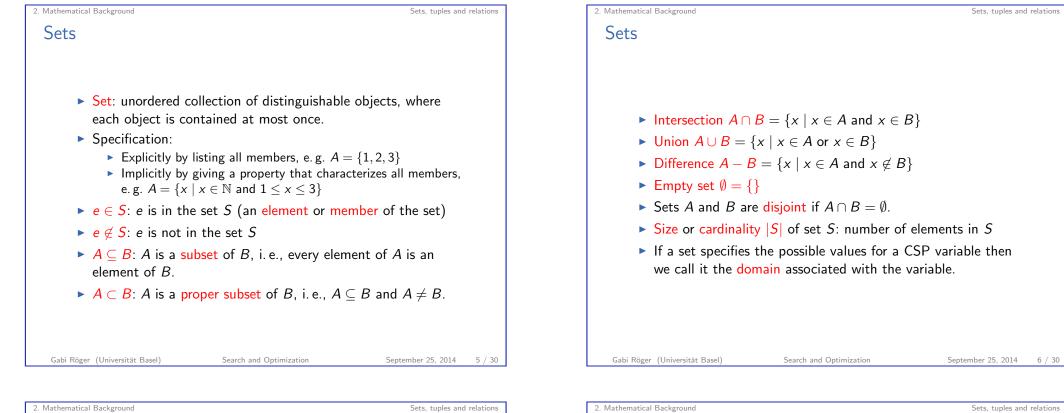


Sets, tuples and relations

## 2.1 Sets, tuples and relations

| Seminar: Search and<br>September 25, 2014 — 2. Mar |                         |                    |        |
|----------------------------------------------------|-------------------------|--------------------|--------|
| 2.1 Sets, tuples a                                 | nd relations            |                    |        |
| 2.2 Graphs                                         |                         |                    |        |
| 2.3 Complexity                                     |                         |                    |        |
|                                                    |                         |                    |        |
| Gabi Röger (Universität Basel)                     | Search and Optimization | September 25, 2014 | 2 / 30 |





Fuples and Cartesian Product *k*-tuple: sequence of *k* objects denoted by (*o*<sub>1</sub>,..., *o<sub>k</sub>*)
Objects in a tuple do not need to be distinct, i. e., an object can occur more than once.
An object in the tuple is called a component.
(Cartesian) product *D*<sub>1</sub> × *D*<sub>2</sub> × ··· × *D<sub>n</sub>* of sets *D*<sub>1</sub>,..., *D<sub>n</sub>*: set of all *n*-tuples (*o*<sub>1</sub>,..., *o<sub>n</sub>*) such that *o*<sub>1</sub> ∈ *D*<sub>1</sub>,..., *o<sub>n</sub>* ∈ *D<sub>n</sub>*.
Example:

{*a*, *b*} × {1, 2, 3} = {(*a*, 1), (*a*, 2), (*a*, 3), (*b*, 1), (*b*, 2), (*b*, 3)}

- Relations
  - ▶ Let S = {x<sub>1</sub>,...,x<sub>k</sub>} be a set of variables and D<sub>1</sub>,...,D<sub>k</sub> the domains associated with these variables.
  - A relation R on S is a subset of  $D_1 \times \cdots \times D_k$ .
  - S is called the scope of R (written scope(R)).
  - k is the arity of R.
  - ► For k = 1, 2, 3, R is called a unary, binary, or ternary relation, respectively.
  - $R = D_1 \times \cdots \times D_k$  is the universal relation.
  - ► If we want to make the scope S of a relation explicit, we often write R<sub>S</sub>.

#### Sets, tuples and relations

September 25, 2014

9 / 30

2. Mathematical Background

## **Representing Relations**

For the examples, we use variables  $x_1$  and  $x_2$  with associated domains  $D_1 = \{1, 2\}$  and  $D_2 = \{2, 4, 6\}$ .

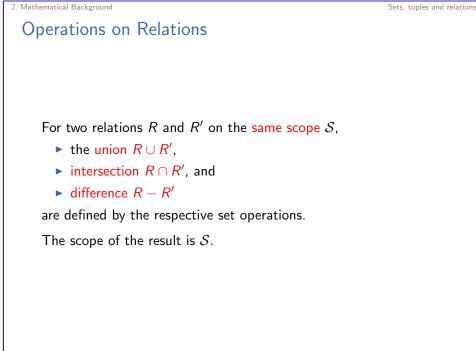
- Explicitly:  $R = \{(1, 2), (1, 6), (2, 4), (2, 6)\}$
- Implicitly:  $R = \{(a, b) \mid a \in D_1, b \in D_2, b = 2a \text{ or } b = 6\}$

6

• Table representation:  $\begin{array}{c|c} x_1 & x_2 \\ \hline 1 & 2 \end{array}$ 1 2 2 6

Gabi Röger (Universität Basel)

Search and Optimization



## Additional Representation for Binary Relations Matrix representation: Matrix with entry 1 if tuple is in the relation and entry 0 otherwise. 2 4 6 1 0 1 2 0 1 1 Gabi Röger (Universität Basel) Search and Optimization September 25, 2014 10 / 30

Sets, tuples and relations

| 2. Mathematical B       | ackgrou               | nd                    |         |                |                       |                       |       |      |                       | Sets, t               | uples an              | d relations |
|-------------------------|-----------------------|-----------------------|---------|----------------|-----------------------|-----------------------|-------|------|-----------------------|-----------------------|-----------------------|-------------|
| Union,                  | Inte                  | ersection             | n and I | Dif            | ffere                 | ence                  | of Re | elat | ions                  | - E                   | Exan                  | nples       |
| ,                       |                       |                       |         |                |                       |                       |       |      |                       |                       |                       | ·           |
|                         |                       |                       |         |                |                       |                       |       |      |                       |                       |                       |             |
| Variable                |                       | $, x_2, x_3$          | R x     | 1              | <i>x</i> <sub>2</sub> | <i>x</i> 3            |       | R'   | $x_1$                 | <i>x</i> <sub>2</sub> | <i>x</i> 3            |             |
| Domair                  | าร                    |                       | -       | 1              | а                     | 4                     |       |      | 1                     | а                     | 4                     |             |
| $D_1 =$                 | = {1,                 | 2,3}                  |         | 2              | b                     | 2                     |       |      | 1                     | а                     | 6                     |             |
| $D_2 =$                 | = { <i>a</i> ,        | <i>b</i> }            | 4       | 2              | b                     | 6                     |       |      | 2                     | b                     | 2                     |             |
|                         |                       | 4,6}                  |         | 3              | а                     | 4                     |       |      |                       |                       |                       |             |
| <i>D</i> <sub>3</sub> - | - ( <del>2</del> ,    | 1,0]                  |         |                |                       |                       |       |      |                       |                       |                       |             |
| -                       |                       |                       |         |                |                       |                       |       |      |                       |                       |                       |             |
|                         | $R \cup R$            |                       |         | ŀ              | $R \cap F$            | -                     |       |      | ŀ                     | R — F                 | 1                     |             |
| <i>x</i> <sub>1</sub>   | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |         | < <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |       |      | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |             |
| 1                       | а                     | 4                     |         | 1              | а                     | 4                     |       |      | 2                     | b                     | 6                     |             |
| 1                       | а                     | 6                     |         | 2              | b                     | 2                     |       |      | 3                     | а                     | 4                     |             |
| 2                       | b                     | 2                     |         |                |                       |                       |       |      |                       |                       |                       |             |
| 2                       | b                     | 6                     |         |                |                       |                       |       |      |                       |                       |                       |             |
| 3                       | а                     | 4                     |         |                |                       |                       |       |      |                       |                       |                       |             |
|                         |                       |                       |         |                |                       |                       |       |      |                       |                       |                       |             |
| Gabi Röger (            | Universi              | tät Basel)            | Sea     | irch a         | and Opti              | mization              |       |      | Septer                | nber 25,              | 2014                  | 12 / 30     |

#### Sets, tuples and relations

## Operations on Relations – Selection

For a relation R, let x be a variable from the scope of R and let e be a value from the associated domain.

The selection  $\sigma_{x=e}(R)$  is the subset of R that contains all elements where the component for x is e.

|                                                           | R     |                       |            |  | $\sigma_{x_1=2}(x_1 \mid x_2)$ |                       |            |
|-----------------------------------------------------------|-------|-----------------------|------------|--|--------------------------------|-----------------------|------------|
|                                                           | $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> 3 |  | $x_1$                          | <i>x</i> <sub>2</sub> | <i>X</i> 3 |
|                                                           | 1     | а                     | 4          |  | 2                              | а                     | 2          |
|                                                           | 2     | a<br>a<br>b<br>a      | 2          |  | 2                              | a<br>b                | 6          |
|                                                           | 2     | Ь                     | 6          |  |                                |                       |            |
|                                                           | 3     | а                     | 4          |  |                                |                       |            |
| The scope of the resulting relation is the scope of $R$ . |       |                       |            |  |                                |                       |            |

Search and Optimization

2. Mathematical Background

Sets, tuples and relations

13 / 30

September 25, 2014

**Operations on Relations – Projection** 

For a relation R and  $Y \subseteq scope(R)$ , the projection  $\pi_Y(R)$  with scope Y consists of all tuples that can be constructed from a tuple in R by removing all components for variables that are not in Y.

|   | R                     |   | $\pi_{\{x_1\}}$ | $,x_{2}\}(R)$         |
|---|-----------------------|---|-----------------|-----------------------|
|   | <i>x</i> <sub>2</sub> | - | x <sub>1</sub>  | <i>x</i> <sub>2</sub> |
| 1 | а                     | 2 | 1               | а                     |
| 1 | а                     | 4 | 2               | b                     |
| 2 | Ь                     | 6 | 3               | а                     |
| 3 | а                     | 4 |                 | I                     |

Put simply: In the table representation, remove all columns for variables that are not in *Y*. Afterwards, remove duplicate rows.

## **Operations on Relations – Selection**

2. Mathematical Background

|                                                                                            |                       |                  |            | tions $\sigma_{x_1=}$ ?) for $\sigma_{x_1=}$ |                          | . (σ <sub>x</sub> | $e_n (I)$ |         |  |
|--------------------------------------------------------------------------------------------|-----------------------|------------------|------------|----------------------------------------------|--------------------------|-------------------|-----------|---------|--|
|                                                                                            | <i>x</i> <sub>1</sub> | x <sub>2</sub>   | <i>x</i> 3 |                                              | $x_1 = x_1$              | 2,x3—<br>X2       | X3        |         |  |
|                                                                                            | 1                     | a<br>a<br>b<br>a | 4          |                                              | x <sub>1</sub><br>2<br>2 | a                 | 6         |         |  |
|                                                                                            | 2                     | а                | 2          |                                              | 2                        | Ь                 | 6         |         |  |
|                                                                                            | 2                     | а                | 6          |                                              | I                        |                   |           |         |  |
|                                                                                            | 2                     | Ь                | 6          |                                              |                          |                   |           |         |  |
|                                                                                            | 3                     | а                | 4          |                                              |                          |                   |           |         |  |
|                                                                                            |                       | ·                |            |                                              |                          |                   |           |         |  |
| Gabi Röger (Universität Basel)     Search and Optimization     September 25, 2014     14 / |                       |                  |            |                                              |                          |                   |           | 14 / 30 |  |

2. Mathematical Background Operations on Relations – Join Sets, tuples and relations

For two relations R and R' the join operator  $R \bowtie R'$  combines

each tuple from R with all tuples from R' that agree on the common variables.

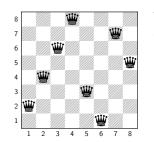
|   | R                     |   |   |   | R'                    |   |   |   | $R \triangleright$    |   |   |
|---|-----------------------|---|---|---|-----------------------|---|---|---|-----------------------|---|---|
|   | <i>x</i> <sub>2</sub> |   | _ |   | <i>x</i> <sub>3</sub> |   |   |   | <i>x</i> <sub>2</sub> |   |   |
| 1 | a<br>a                | 2 |   | 1 | 2<br>2                | * | - | 1 | a<br>a                | 2 | * |
| 1 | a                     | 6 |   | 1 | 2                     | _ |   | 1 | а                     | 2 | _ |
| 3 | а                     | 4 |   | 2 | 4                     | + |   | 3 | а                     | 4 | + |
| 3 | a<br>b                | 4 |   | 3 | 4<br>4                | + |   | 3 | a<br>b                | 4 | + |

The scope of  $R \bowtie R'$  is  $scope(R) \cup scope(R')$ .

Sets, tuples and relations



### Example: Eight Queens



Variables: One variable for each row Domain of each variable:

possible positions in the row

Constraints: No two queens may threaten each other.

#### Formally, the CSP is given by

- A set of variables  $V = \{x_1, x_2, \dots, x_8\}$
- Associated domains  $D_i = \{1, \ldots, 8\}$  for  $1 \le i \le 8$
- For  $1 \le i \le i \le 8$  a constraint  $R_{ii} = \{(p,q) \mid p \neq q \text{ and } |j-i| \neq |p-q|\}$

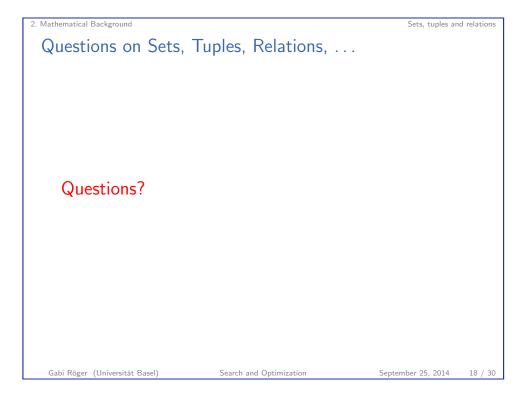
Gabi Röger (Universität Basel)

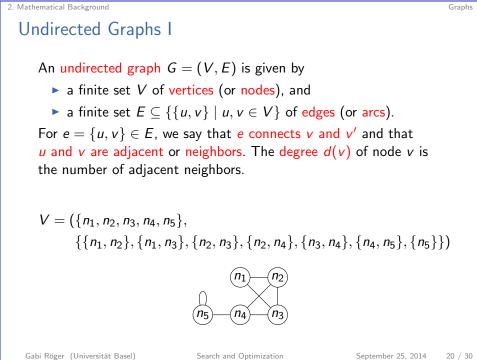
Search and Optimization

September 25, 2014

17 / 30

2. Mathematical Background 2.2 Graphs





Sets, tuples and relations

### Undirected Graphs II

- Path: Sequence e<sub>1</sub>, e<sub>2</sub>,..., e<sub>k</sub> of edges such that e<sub>i</sub> and e<sub>i+1</sub> share an end point (for 1 ≤ i < k)</p>
- Alternatively: Path as sequence  $v_0, \ldots, v_k$  of vertices, where  $\{v_i, v_{i+1}\} \in E$  for  $0 \le i < k$ .
- In path v<sub>0</sub>,..., v<sub>k</sub>, v<sub>0</sub> is the start vertex, v<sub>k</sub> the end vertex and the path has length k.
- A path is simple if no vertex occurs more than once.
- A cycle is a path whose start and end vertices are the same.
- A cycle is simple if without the end vertex it is a simple path.

Gabi Röger (Universität Basel)

Search and Optimization

September 25, 2014

21 / 30

Graphs

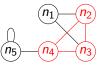
2. Mathematical Background

# Directed Graphs I A directed graph (or digraph) G = (V, E) is given by • a finite set V of vertices (or nodes), and • a finite set $E \subseteq \{(u, v) \mid u, v \in V\}$ of edges (or arcs). Edge $e = (u, v) \in E$ (also written $u \rightarrow v$ ) is directed from start vertex u to end vertex v. $V = (\{n_1, n_2, n_3, n_4, n_5\}, \{(n_1, n_2), (n_2, n_1), (n_2, n_3), (n_2, n_4), (n_1, n_3), (n_4, n_5), (n_5, n_5)\})$

#### 2. Mathematical Background

### Undirected Graphs III

- An undirected graph without any cycles is a tree.
- If there is a path between any two edges, the graph is connected.
- A graph is complete if any two nodes are adjacent.
- ▶ For  $S \subseteq V$ , the subgraph relative to S is  $G_S = \{S, \{\{u, v\} \mid \{u, v\} \in E \text{ and } \{u, v\} \subseteq S\}.$
- A clique in a graph is a complete subgraph.

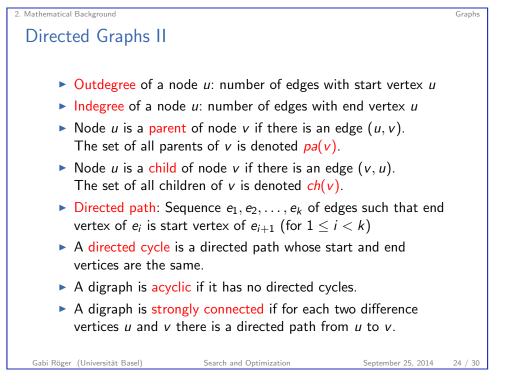


The subgraph relative to  $\{n_2, n_3, n_4\}$  is a clique.

```
Gabi Röger (Universität Basel)
```

Search and Optimization

September 25, 2014 22 / 30



September 25, 2014 23 / 30

| 2. | Mathematical | Background |
|----|--------------|------------|

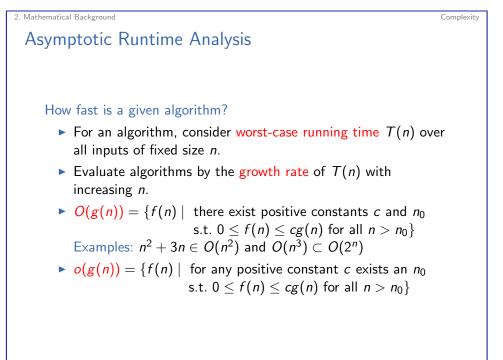
## Questions on Graphs

Graphs

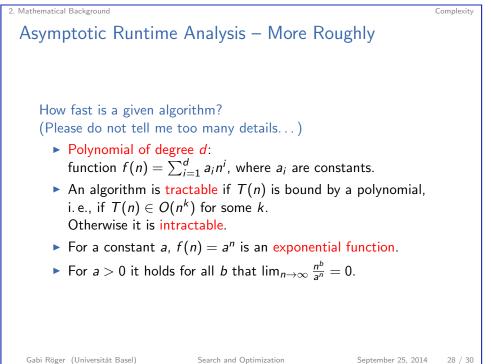


Gabi Röger (Universität Basel)

Search and Optimization



# 2. Mathematical Background Complexity 2.3 Complexity Gabi Röger (Universität Basel) Search and Optimization September 25, 2014 26 / 30



September 25, 2014

25 / 30

