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2. Mathematical Background Sets, tuples and relations 2. Mathematical Background

Sets, tuples and relations

Example: Eight Queens

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

2.1 Sets, tuples and relations

Constraints:
No two queens may threaten each other.

How can we formally specify such a
constraint satisfaction problem?

Are there mathematical operations our algorithms can use?
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2. Mathematical Background Sets, tuples and relations

Sets

v

Set: unordered collection of distinguishable objects, where
each object is contained at most once.

v

Specification:
» Explicitly by listing all members, e.g. A={1,2,3}
» Implicitly by giving a property that characterizes all members,
e.g. A={x|xeNand1<x<3}

» e € S:eisin the set S (an element or member of the set)

2. Mathematical Background Sets, tuples and relations

Sets

» Intersection ANB ={x|x € Aand x € B}

» Union AUB={x|x€Aorx e B}

» Difference A— B={x|x€ Aand x ¢ B}

» Empty set ) = {}

» Sets A and B are disjoint if AN B = 0.

» Size or cardinality |S| of set S: number of elements in S

> If a set specifies the possible values for a CSP variable then
we call it the domain associated with the variable.

> e ¢ S: eis not in the set S
» AC B: Ais a subset of B, i.e., every element of A is an
element of B.
» AC B: Ais a proper subset of B, i.e., AC B and A# B.
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2. Mathematical Background Sets, tuples and relations

Tuples and Cartesian Product

» k-tuple: sequence of k objects denoted by (o1, ..., 0k)

» Objects in a tuple do not need to be distinct, i.e., an object
can occur more than once.

» An object in the tuple is called a component.

» (Cartesian) product Dy x Dy x -+ x D, of sets Dy, ..., Dp:
set of all n-tuples (o1, ..., 0,) such that oy € Ds,...,0, € D,,.
> Example:

{a, b} x{1,2,3} ={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}
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2. Mathematical Background Sets, tuples and relations
Relations
» Let S = {xy,...,xk} be a set of variables and Dy, ..., Dy the

domains associated with these variables.
A relation R on S is a subset of Dy X - -+ x Dy.

v

v

S is called the scope of R (written scope(R)).
k is the arity of R.

v

v

For k =1,2,3, R is called a unary, binary, or ternary relation,
respectively.

v

R = D; x --- x Dy is the universal relation.

v

If we want to make the scope S of a relation explicit,
we often write Rs.
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2. Mathematical Background Sets, tuples and relations

Representing Relations

For the examples, we use variables x; and x, with associated
domains D; = {1,2} and D, = {2,4.6}.

> Explicitly: R = {(1,2),(1,6), (2,4), (2,6)}
» Implicitly: R = {(a,b) | a€ Dy,b € Do, b=2a or b= 6}

» Table representation: x3 | xo

NN — =
S~ ODN
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2. Mathematical Background Sets, tuples and relations

Additional Representation for Binary Relations

Matrix representation:
Matrix with entry 1 if tuple is in the relation and entry 0 otherwise.

2 4 6
1 1 01
2 011
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2. Mathematical Background Sets, tuples and relations

Operations on Relations

For two relations R and R’ on the same scope S,
» the union RU R/,
> intersection RN R’, and
» difference R — R’

are defined by the respective set operations.

The scope of the result is S.

2. Mathematical Background Sets, tuples and relations

Union, Intersection and Difference of Relations — Examples

Variables x1, x2, x3
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Domains
Dl = {17 2a 3}
D2 = {a, b}
D; ={2,4,6}
RUR’ RNR R—R
X1 X2 X3 X1 X2 X3 X1 X2 X3
1| a| 4 1| a| 4 2 6
1] a|6 2| b |2 3| a4
2 | b |2
2| b |6
3| a|4
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2. Mathematical Background

Operations on Relations — Selection

For a relation R, let x be a variable from the scope of R and let e
be a value from the associated domain.

The selection ox—.(R) is the subset of R that contains all elements
where the component for x is e.

R 0x—2(R)
X1 X2 X3
21 a2
2| b | 6

The scope of the resulting relation is the scope of R.
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2. Mathematical Background Sets, tuples and relations

Operations on Relations — Selection

We use the abbreviations o, —¢, . x,—e,(R) and
e)(R) for ox=e; (- - - (0xp=e,(R)) - - -).

O (x1,.eXn)=(€1,--,

R O-X1:2,X3:6(R)
X1 | X2 | X3 X1 | X2 | X3
21 al| 6
2 b 6

W NDNNDN -
L TV L L
O o N B
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2. Mathematical Background

Operations on Relations — Projection

For a relation R and Y C scope(R), the projection 7y (R) with
scope Y consists of all tuples that can be constructed from a tuple
in R by removing all components for variables that are not in Y.

R W{xl,xg}(R)
X1 | X2
1] a
2 | b
3| a

Put simply: In the table representation, remove all columns for
variables that are not in Y. Afterwards, remove duplicate rows.
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2. Mathematical Background

Operations on Relations — Join

For two relations R and R’ the join operator R X R’ combines
each tuple from R with all tuples from R’ that agree on the
common variables.

R R’ R X R’
X1 ‘ X2 ‘ X3 ‘ X4
1| a] 2| %
1 1a|2]| -
3|1 al|éd4 |+
3|b| 4|+

The scope of R X R’ is scope(R) U scope(R’).
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2. Mathematical Background Sets, tuples and relations

Example: Eight Queens

Variables:
One variable for each row

Domain of each variable:
possible positions in the row

Constraints:
No two queens may threaten each other.

Formally, the CSP is given by
» A set of variables V = {xq, x2,...,xg}
» Associated domains D; = {1,...,8} for 1 <i <38

» For 1 < < j <8 a constraint
Ri={(p,q) | p#qand |j —il #|p—ql}
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2. Mathematical Background

Questions on Sets, Tuples, Relations,

Questions?
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2. Mathematical Background Graphs

2.2 Graphs
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2. Mathematical Background

Undirected Graphs |

An undirected graph G = (V/, E) is given by
> a finite set V of vertices (or nodes), and
> a finite set E C {{u, v} | u,v € V} of edges (or arcs).

For e = {u, v} € E, we say that e connects v and v/ and that
u and v are adjacent or neighbors. The degree d(v) of node v is
the number of adjacent neighbors.

= ({n].) np, N3, Ng, n5};

{{nlv n2}7 {nl? n3}v {n2a n3}7 {n27 n4}7 {n3a n4}7 {n4v n5}a {n5}})

@ @“
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2. Mathematical Background Graphs

Undirected Graphs Il

» Path: Sequence e1, ey, ..., e, of edges such that ¢; and e;11
share an end point (for 1 </ < k)

» Alternatively: Path as sequence vy, ..., v, of vertices, where
{vi,viy1} € Efor 0 < i < k.

> In path vy,..., vk, Vg is the start vertex, v, the end vertex
and the path has length k.

> A path is simple if no vertex occurs more than once.

> A cycle is a path whose start and end vertices are the same.

» A cycle is simple if without the end vertex it is a simple path.
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2. Mathematical Background

Undirected Graphs IlI

v

An undirected graph without any cycles is a tree.

v

If there is a path between any two edges, the graph is
connected.

v

A graph is complete if any two nodes are adjacent.

For S C V, the subgraph relative to S is
Gs ={S,{{u,v} | {u,v} € E and {u,v} C S}.

A clique in a graph is a complete subgraph.

v

v

@ @“

The subgraph relative to {n2, n3, na} is a clique.

Graphs

2. Mathematical Background Graphs

Directed Graphs |

A directed graph (or digraph) G = (V, E) is given by
» a finite set V of vertices (or nodes), and
» a finite set E C {(u,v) | u,v € V} of edges (or arcs).

Edge e = (u, v) € E (also written u — v) is directed from start
vertex u to end vertex v.

= ({n1, m2, n3, ng, ns},
{(n17 n2)7 ('727 nl)? (n27 n3)7 (n27 n4)7 (n17 n3)7 (I’I4, I75), (n57 n5)})

OC
ONTAC
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2. Mathematical Background Graphs
Directed Graphs Il
» Outdegree of a node u: number of edges with start vertex u
> Indegree of a node u: number of edges with end vertex u
» Node u is a parent of node v if there is an edge (u, v).
The set of all parents of v is denoted pa(v).
» Node v is a child of node v if there is an edge (v, u).
The set of all children of v is denoted ch(v).
» Directed path: Sequence e, e, ..., e of edges such that end
vertex of e; is start vertex of ej11 (for 1 < i < k)
» A directed cycle is a directed path whose start and end
vertices are the same.
» A digraph is acyclic if it has no directed cycles.
> A digraph is strongly connected if for each two difference
vertices u and v there is a directed path from u to v.
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2. Mathematical Background Graphs

Questions on Graphs

Questions?
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2. Mathematical Background

2.3 Complexity

Complexity

2. Mathematical Background Complexity

Asymptotic Runtime Analysis

How fast is a given algorithm?

» For an algorithm, consider worst-case running time T(n) over
all inputs of fixed size n.

» Evaluate algorithms by the growth rate of T(n) with
increasing n.
» O(g(n)) ={f(n)| there exist positive constants ¢ and ng
s.t. 0 < f(n) < cg(n) for all n > ng}
Examples: n? +3n € O(n?) and O(n®) C O(2")
» o(g(n)) = {f(n) | for any positive constant ¢ exists an ng
s.t. 0 < f(n) < cg(n) for all n > ng}
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2. Mathematical Background Complexity
Asymptotic Runtime Analysis — More Roughly
How fast is a given algorithm?
(Please do not tell me too many details. . .)
» Polynomial of degree d:
function f(n) = 27:1 ajn', where a; are constants.
» An algorithm is tractable if T(n) is bound by a polynomial,
i.e., if T(n) € O(nk) for some k.
Otherwise it is intractable.
» For a constant a, f(n) = a" is an exponential function.
. . b
» For a > 0 it holds for all b that lim,_,o, 7z = 0.
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2. Mathematical Background

Complexity of Problems

How fast can the best algorithm for a problem class be?

> If there is a tractable algorithm, the problem class is tractable.

> NP-complete problem classes are believed to require
exponential runtime in the worst case.

» For NP-complete problem classes, a potential solution can be
verified in polynomial time.

» Bad news: Constraint Satisfaction Problems are NP-complete.

» There is probably no tractable algorithm.

» Idea 1: Find algorithms that are sufficiently fast in
most of the cases

» ldea 2: Identify tractable subclasses
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2. Mathematical Background

Questions on Complexity

Questions?
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