Temporal Constraint Networks

Search & Optimization

Esteban Lanter

University of Basel

December 04th, 2014

Table of Contents

- Introduction
- Qualitative Networks
 - Interval Algebra
 - Point Algebra
- Quantitative Temporal Networks
 - The General Temporal Constraint Satisfaction Problem
 - The Simple Temporal Problem
 - The General Temporal Constraint Satisfaction Problem

Introduction

Temporal Constraint Networks: Reasoning about time

- Points in time
- Time Intervals
- Relative locations of points or intervals

Introduction

Introduction

3 major models:

- Point Algebra
- Interval Algebra
- Quantitative Temporal Networks

Tradeoff: Expressiveness vs. Tractability

Reasoning on qualitative temporal statements

- No quantitative statements about time
- Qualitative statements about the relative location of temporal elements
- Interval Algebra: Temporal objects are intervals
- Point Algebra: Temporal objects are time points

Both approaches are closely related

Qualitative Networks

Example

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

What do we want to reason about?

- Is the temporal statement consistent?
- If yes, what kind of possible scenarios along the time line can we construct?

Interval Algebra

Qualitative statements regarding the relative locations of paired intervals

• 7 atomic relations between intervals (13 including inverses)

Relation	Symbol	Inverse	Example
X before Y	b	bi	X
X equal Y	=	=	X
X meets Y	m	mi	XY
X overlaps Y	0	oi	X
X during Y	d	di	X
X starts Y	s	si	X
X finishes Y	f	fi	Y

• The relative location of the Intervals I and J can be specified by a relation set $\{r_1, \ldots, r_k\} \to I\{r_1, \ldots, r_k\} J \to (Ir_1J) \lor \ldots \lor (Ir_kJ)$

Interval Algebra - Example

Example

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

Representing this knowledge within the IA framework:

- [Switch] as time of touching the switch, [Light] as time that light was on, [Room] as time John was in the room
- [Switch] overlaps or meets [Light]: Switch{o, m}Light
- [Switch] is either before, meets, met by, or after [Room]: Switch{b, m, mi, a}Room
- [Light] overlaps, starts, or is during [Room]: Light $\{o, s, d\}$ Room.

Interval Algebra Network

Knowledge can be represented as a constraint network:

- Variables representing temporal intervals: $\{x_1, \ldots, x_n\}$
- Domain: Ordered pairs of real numbers representing beginning & end point of corresponding interval: $D_i = (a, b)$
- Binary constraints between pairs of intervals given as IA relations:
 C_{ij} ⊆ {b, m, o, s, d, f, bi, mi, oi, si, di, fi, =}
 → 8191 possible constraints
- Solution: Assignment of pair of numbers to each variable so that no constraint is violated

Unique to IA representation of TCP: Constraints are given as enumerated atomic relationships, and not as explicit relations over variable domains.

Interval Algebra Network - Example

Graph Representation and one possible solution

- Solution corresponds to feasible relations: (Switch m Light), (Light s Room), (Switch m Room)
- IA reasoning is mainly interested in finding the consistent qualitative arrangement of the intervals
- Deciding consistency and finding solutions requires search and inference algorithms

The Minimal IA Network

IA networks are binary → Minimal Networks

- Most explicit representation of all feasible relations between all pairs of intervals
- It is tighter but equivalent as it has the same solution set
- Search algorithms still necessary to find solutions but search space is smaller
- How to generate the minimal network? → Path-Consistency

Path-Consistency in IA Networks

Path consistency requires inference \rightarrow in IA: Composition

• The *composition* of 2 basic relations r' & r'' can be deduced using a transitivity table

	Ь	s	d	0	m
Ь	b	b	bomds	ь	ь
s	b	s	d	bom	ь
d	ь	d	d	bomds	ь
0	ь	0	ods	bom	ь
m	ь	m	ods	ь	ь

Path-Consistency in IA Networks - Composition

Example

2 basic relations:

- I meets K: $r' = I\{m\}K$
- K is during J: $r'' = K\{d\}J$
- Composition $r' \otimes r'' = m \otimes d = \{o, d, s\}$

Path-Consistency in IA Networks - Composition

IA has multiple relations in a constraint \rightarrow composite relations

• Composition of 2 composite relations:

$$R' \otimes R'' = \{r' \otimes r'' | r' \in R', r'' \in R''\}$$

Example

•
$$\{b, d, o\} \otimes \{s, o\} = \{b, d, o, m, s\}$$

Path-Consistency in IA Networks - Relaxation

Path consistency through Relaxation

• For three given variables x_i , x_j , and x_k , the equivalent path-consistent subset can be achieved by applying the relaxation algorithm:

$$C_{ij} \leftarrow C_{ij} \oplus (C_{ik} \otimes C_{kj})$$

 Repeated application of the relaxation algorithm can convert a the whole network into its equivalent path-consistent form.

Path Consistency in IA - Example I

- Apply $C_{SR} \leftarrow C_{SR} \oplus (C_{SL} \otimes C_{LR})$
- $C_{SL} \otimes C_{LR} = \{o, m\} \otimes \{o, s, d\} = \{b, o, m, d, s\} = C_{SR}'$
- $C_{SR} = \{b, m, mi, a\}$
- $C_{SR} \leftarrow C_{SR} \cap C_{SR}' = \{b, m\}$

Path Consistency in IA - Example II

- Apply $C_{LR} \leftarrow C_{LR} \oplus (C_{LS} \otimes C_{SR})$
- $C_{LS} \otimes C_{SR} = \{oi, mi\} \otimes \{b, m\} = \{b, m, o, fi, di, si\} = C_{LR}'$
- $C_{LR} = \{o, s, d\}$
- $C_{LR} \leftarrow C_{LR} \cap C_{LR}' = \{o, s\}$

Path Consistency in IA - Example III

- No changes after further application of relaxation
- The resulting Network is now path-consistent
- ullet If relaxation results in empty constraint o inconsistency discovered

But IA networks are generally incomplete

- Minimal networks are not guaranteed to be found
- \bullet Minimal networks not guaranteed to be globally consistent \to backtracking may still be necessary

• The relation set (Switch o Light), (Light s Room), (Switch m Room) is inconsistent

Point Algebra

Time points and not intervals

- less expressive → more tractable
- Transitivity table:

	<	=	>
<	<	<	?
=	<	=	>
>	?	=	>

- In Point Algebra, consistency can be decided in $O(n^2)$
- Path consistency can always generate a minimal network in $O(n^4)$ ($O(n^3)$) for special subsets)
- Point Algebra preferred framework if problem can be stated (translation IA \rightarrow PA sometimes possible)

Quantitative Temporal Networks

QTN vs IA and PA

- IA and PA formulate temporal knowledge in form of qualitative statements on the relative locations of time variables
- Quantitative temporal networks work with explicit metrical information on time

Quantitative Temporal Networks

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

What do we want to know?

- Is the information in the story consistent?
- Is it possible that John took the bus and Fred used the carpool?
- What are the possible times at which Fred left home?

The Temporal Constraint Satisfaction Problem

Defining the TCSP

- A set of variables $\{x_1, \ldots, x_n\}$ with continuous domains
 - Each variable represents a time point. A time point is the beginning or ending of an event or a neutral point in time
- A set of constraints $\{I_1, ..., I_k\} = \{[a_1, b_1], ..., [a_k, b_k]\}$
 - each constraint is represented by a set of intervals
 - each interval is defined by a pair of time points
 - Unary constraint: $(a_1 \le x_i \le b_1) \lor \ldots \lor (a_k \le x_i \le b_k)$
 - Binary constraint: $(a_1 \le x_j x_i \le b_1) \lor \ldots \lor (a_k \le x_j x_i \le b_k)$

Building the TCSP network

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

Identify intervals!

- John is traveling to work
 - John leaves home x₁ and John arrives at work x₂
 - Interval $[x_1, x_2]$
- Fred is traveling to work
 - Fred leaves home x₃ and Fred arrives at work x₄
 - Interval $[x_3, x_4]$

Building the TCSP network

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

The directed constraint graph

- x_o is the beginning of the world
- All time quantities are relative to x_0
- Assign $x_0 = 7:00$ A.M.
- $10 < x_1 x_0 < 20$
- $20 < x_4 x_3 < 30$ or $40 < x_4 x_3 < 50$

Properties I

The TCSP is a binary network \rightarrow usual rules apply!

- Value v is *feasible* for variable x_i if there exists a solution in which $x_i = v$
- Set of all feasible values for a domain is minimal domain
- Set of all feasible values for $x_i x_i$ is a minimal constraint
- A network is minimal iff its domains and constraints are minimal
- If every consistent assignment of values to variables can be extended to a solution \rightarrow binary decomposable

Properties II

Inference techniques:

- Union
- Intersection
- Composition

Using these, we can find out:

- Is the Network consistent?
- If the network is consistent, what are possible legal scenarios? When can x_i occur? What are legal relations between x_i and x_j ?

These are all NP-hard to solve! But there is a special class of temporal Problems that can be processed in polynomial time

STP - The Simple temporal Problem

The STP is a TCSP in which all constraints specify a single interval

- Each edge $i \rightarrow j$ is labeled by a single interval $[a_{ii}, b_{ii}]$ that represents the constraint $a_{ij} \leq x_i - x_i \leq b_{ij}$
- Expressed a pair of inequalities: $x_i x_i \le b_{ij}$ and $x_i x_i \le -a_{ij}$

Convenient representation: Distance Graph

- Not the same as directed constraint graph
- Each edge $i \rightarrow j$ labeled by weight a_{ij} representing $x_i x_i \le -a_{ij}$

This network can be solved by a shortest-path algorithm!

STP - Example

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

- Only singular intervals → we (must) assume that John used a car and Fred used a carpool.
- The other possibilities (John uses bus and Fred uses car) are disregarded (for now)
- $T_{12} = \{(30, 40)\}$
- $T_{34} = \{(40, 50)\}$

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

- Only singular intervals → we (must) assume that John used a car and Fred used a carpool.
- The other possibilities (John uses bus and Fred uses car) are disregarded (for now)
- $T_{12} = \{(30, 40)\}$
- $T_{34} = \{(40, 50)\}$

STP - Observations

Each path from point i to point j induces a constraint on the distance $x_i - x_i$

•
$$x_j - x_i \leq \sum_{j=1}^k a_{i_{j-1}, i_j}$$

There can be multiple paths from i to j which induce multiple constraints

•
$$x_4 - x_1 = a_{01} + a_{12} + a_{23} + a_{34} = 20 + 40 - 10 + 50 = 100$$

•
$$x_4 - x_1 = a_{10} + a_{04} = -10 + 70 = 60$$

The intersection of all these constraints is given by the shortest path d_{ij} between i and j

•
$$x_i - x_i \leq d_{ij}$$

•
$$min(x_4 - x_1) = 60 \rightarrow d_{14} = 60$$

STP - Consistency

The STP is consistent iff there are no negative cycles

- Cycle: $x_0 \to x_1 \to x_2 \to x_3 \to x_4 \to x_0$
- Sum of inequalities: $a_{01} + a_{12} + a_{23} + a_{34} + a_{40} \equiv x_0 x_0 \le -20 \rightarrow inconsistent!$

STP - Consistency

If the STP is consistent

• $d_{0j} \leq d_{0i} + a_{ij}$ will always be satisfied

$$\rightarrow d_{0j} - d_{0i} \leq a_{ij}$$

- $d_{01}, d_{02}, \dots, d_{0n}$ will always satisfy all inequality constraints a_{ij} on the STP edges
- Hence, one of the solution sets of an STP has the form:

$$(x_1 = d_{01}, x_2 = d_{02} \dots x_n = d_{0n})$$

• Together with its negative reverse we have 2 solution sets:

$$S_1 = (d_{01}, \ldots, d_{0n}), S_2 = (-d_{10}, \ldots, -d_{n0})$$

 Upper/lower bounds in the sense that these assign the latest or earliest possible times

The D-Graph

Distances can be specified by a complete and directed d-graph

		0	1	2	3	4
Г	0	0	20	50	30	70
	1	-10	0	40	20	60
	2	-40	-30	0	-10	30
ı	3	-20	-10	20	0	50
L	4	-60	-50	-20	40	0

- This is a more explicit representation of the STP
- Any consistent STP is backtrack-free (decomposable) relative to the constraints in its d-graph.

The Minimal STP Network

Domains and constraints characterized by the D-Graph can easily be converted into a minimal representation

- Minimal network $M_i ij = \{[-d_{ii}, d_{ii}]\}$
- Feasible values for variable $X_i = [d_{i0}, d_{0i}]$

	0	1	2	3	4
0	[0]	[10, 20]	[40, 50]	[20, 30]	[60, 70]
1	[-20, -10]	[0]	[30, 40]	[10, 20]	[50, 60]
2	[-50, -40]	[-40, -30]	[0]	[-20, -10]	[20, 30]
3	[-30, -20]	[-20, -10]	[10, 20]	[0]	[40, 50]
4	[-70, -60]	[-60, -50]	[-20, -30]	[-50, -40]	[0]

The minimal network gives us bounds for all feasible values for any potential temporal relationship between the variables

Constructing the D-Graph

The Floyd-Warshall Algorithm

```
ALL-PAIRS-SHORTEST-PATHS \begin{aligned} & \textbf{Input:} \ A \ \text{distance graph} \ G = \{V_i, E\} \ \text{with weights} \ a_{ij} \ \text{for} \ (i,j) \in E. \end{aligned} \begin{aligned} & \textbf{Output:} \ A \ d\text{-graph}. \\ & 1. \ \text{for} \ i := 1 \ \text{to} \ n \ \text{do} \ d_{ij} \leftarrow 0 \\ & 2. \ \text{for} \ i,j := 1 \ \text{to} \ n \ \text{do} \ d_{ij} \leftarrow a_{ij} \\ & 3. \ \text{for} \ k := 1 \ \text{to} \ n \ \text{do} \end{aligned}
```

- Applying the Floyd-Warshall algorithm is equivalent to imposing Path-Consistency on an STP
- Inconsistency is detected by examining sign of the diagonal elements of the D-Graph
- Runtime $O(n^3)$

Assembling the solution

- Start with $x_0 = 0$
- Assign to each variable any value that satisfies the D-Graph constraints relative to its previous assignments
- Due to no backtracking computational burden remains mainly on constructing the D-Graph $(O(n^3))$

The general TCSP

As opposed to the STP, the general TCSP has multiple intervals per edge

- General approach: Decompose TCSP into multiple STP's Permute through selections with only 1 Interval per constraint
- 1 particular selection of Intervals: labeling
- Minimal TCSP network: Union over all individual minimal networks of all possible labelings T

The general TCSP-Example

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

4 labelings - 4 Individual STP's

John: car, Fred: car

John: car, Fred, carpool

John: bus, Fred: car

John: bus, Fred: carpool

Solving the general TCSP

Straightforward:

• Brute Force enumeration through all labelings - $O(n^3k^e)$

Sophisticated:

- Meta-CSP Variables are TCSP edges, Domains are possible intervals
- Backtracking algorithm assigns intervals to edges
- Backtrack if negative cycle is encountered on current STP

Preprocessing TCSP's:

Enforce path consistency or directional path consistency on TCSP