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Motivation
n-queens with Backtracking:

➢ guarantees to find all solutions

➢ reaches limit for big problems:

 Best backtracking methods 

 solve up to 100-queens

➢ Stochastic search:

 1 million queens solvable

 in less than a minute
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Systematic vs. Stochastic Search
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Greedy Local Search
➢ usually runs on complete instantiations (leaves)

➢ starts in a randomly chosen instantiation

➢ assignments aren't necessarily consistent

1233 2413 43331232 2311

Progressing:

➢ Local changes (of one variable assignment)

➢ Greedy, minimizing cost function (#broken constraints)

Stopping Criterion:

➢ Assignment is consistent (const function = 0)
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Greedy SLS: Algorithm
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Example
4-queens with SLS:

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0

Cost function value:  6
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Example
4-queens with SLS:

Cost function value:  4

3

4

3

4

3 5

3

6 2

2

2

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0
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Example
4-queens with SLS:

Cost function value: 
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➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0



9 - 29
01

Example
4-queens with SLS:

Cost function value:  
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➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0
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Problem with SLS
➢ Search can get stuck in a local minimum or on a plateau

 → Algorithm never terminates
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cost

Plateaus & Local Minima
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Escaping local minima

1. Plateau Search 

➢ Allow non-improving sideway steps

➢ Problem: running in circles

Plateau

cost
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Escaping local minima

2. Tabu search

➢ Store last n variable-value assignments

➢ Use list to prevent backward moves
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Escaping local minima

3. Random Restarts

➢ Restart algorithm in new random initialisation

➢ Can be combined with other escape-techniques

➢ Suggestions for restart:

➢ when no improvement is possible

➢ after max_flips steps without improvement (Plateau search)

➢ increase max_flips after every improvement

➢ Achieve guarantee to find a solution
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Escaping local minima

4. Constraint weighting

➢ Cost function:

➢ Increasing weights of a violated constraint in local minima

Plateau

F (a⃗) = ∑
i
w i∗C i( a⃗)
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Other improvements

Problem: Undetermined Termination

➢ Set a limit max_tries for the algorithm when to stop

➢ but: we lose guarantee to find a solution

Anytime Behaviour

➢ Store best assignment found so far (minimal #broken constraints)

➢ Return assignment when we need one (no solution)
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Random Walks

Eventually hits a satisfying assignment (if exists)
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p and Simulated Annealing

➢ Optimal p values for specific problems

Extension: Simulated Annealing

➢ Decrease p over time (by „cooling the temperature“)

➢ more random jumps in earlier stages

➢ more greedy progress later
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SLS + Inference

Goal: Smaller search space

➢ use Inference methods as with systematic search

➢ constraint propagation: performance varies

➢ very helpful for removing many near-solutions

➢ not good for uniform problem structures
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SLS with Cycle-Cutset

Recap: Cycle-cutset decomposition
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SLS with Cycle-Cutset

Idea: Replace systematic search on cutset with SLS

➢ Start with random cutset assignment

Repeat:

➢ calculate minimal cost in trees:

➢ assign values with minimal cost to tree variables

➢ greedily optimize cutset assignment (Local Search)

C (zi→a i)= ∑
children z j

mi na j∈D z j
(C ( z j→a j)+R( z i→ai , z j→a j))
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SLS with Cycle-Cutset
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Example: Binary domains

1. Assign values to cutset variables
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SLS with Cycle-Cutset
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SLS with Cycle-Cutset
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SLS with Cycle-Cutset
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SLS with Cycle-Cutset
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SLS with Cycle-Cutset

=

>

>

=

=

<
00

0

2. From leaves to root:

Calculate minimal cost values
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SLS with Cycle-Cutset
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Summary

Stochastic Local Search

➢ Approximates systematic search

➢ Greedy algorithms: Techniques to escape local minima

➢ Random Walk: combines greedy + random choices

➢ Combination with Inference methods can help

➢ Can work very well

➢ but no guarantee of termination AND finding a solution
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