Chapter 7 Stochastic Local Search

Michaja Pressmar 13.11.2014

Motivation

n-queens with Backtracking:

- > guarantees to find all solutions
- reaches limit for big problems:
 Best backtracking methods
 solve up to 100-queens
- > Stochastic search:
 - 1 million queens solvable
 - in less than a minute 2 29

Systematic vs. Stochastic Search

Greedy Local Search

> usually runs on complete instantiations (leaves)

- > starts in a randomly chosen instantiation
- > assignments aren't necessarily consistent

Progressing:

- > Local changes (of one variable assignment)
- Greedy, minimizing cost function (#broken constraints)

Stopping Criterion:

> Assignment is consistent (const function = 0)

Greedy SLS: Algorithm

procedure: SLS

- **Input** : A constraint network $\mathfrak{R} = (X, D, C)$. A cost function defined on full assignments. **Output**: A solution (no guarantee to terminate)
- **initialization:** let $\bar{a} = (a_1, ..., a_n)$ be a random initial assignment to all variables.

while \bar{a} is not consistent do

let $Y = (x_i, a'_i)$ be the set of variable-value pairs that when x_i is assigned a'_i , give a maximum improvement in the cost of the assignment

pick a pair
$$x_i, a'_i \in Y$$
.
 $\bar{a} \leftarrow (a_1, \dots, a_{i-1}, a'_i, a_{i+1}, \dots, a_n)$ (just flip a_i to a'_i)

end

return \bar{a}

4-queens with SLS:

starts in a randomly chosen instantiation

- random change of one assignment
- > minimize #broken constraints

> stop when cost function = 0

4-queens with SLS:

Ŵ	3	5	2	
4	Ŵ	3	Ŵ	
3	3	6	2	
4	4	Ŵ	Ŵ	

> starts in a randomly chosen instantiation

- random change of one assignment
- > minimize #broken constraints

> stop when cost function = 0

Cost function value:

4

7 - 29

4-queens with SLS:

Ŵ	Ŵ	4	2	
3	Ŵ	3	Ŵ	
2	1	5	2	
2	2	Ŵ	4	

starts in a randomly chosen instantiation

- random change of one assignment
- > minimize #broken constraints

> stop when cost function = 0

Cost function value:

4-queens with SLS:

Ŵ	Ŵ	4	3	
3	2	3		
	1	2	2	
1	2	Ŵ	3	

starts in a randomly chosen instantiation

- random change of one assignment
- > minimize #broken constraints

> stop when cost function = 0

Cost function value:

1

9 - 29

Problem with SLS

Search can get stuck in a *local minimum* or on a *plateau*

2

 \rightarrow Algorithm never terminates

Ŵ	1	4	2	Ŵ	1	2	2
3	Ŵ	3	Ŵ	4	2	2	Ŵ
2	1	5	2	2	Ŵ	3	3
2	2	Ŵ	4	3	2	Ŵ	3

Cost function value:

Cost function value: 1

Plateaus & Local Minima

1. Plateau Search

- > Allow non-improving sideway steps
- > Problem: running in circles

2. Tabu search

- Store last n variable-value assignments
- > Use list to prevent backward moves

3. Random Restarts

- > Restart algorithm in new random initialisation
- Can be combined with other escape-techniques
- > Suggestions for restart:
 - > when no improvement is possible
 - > after max_flips steps without improvement (Plateau search)
 - > increase max_flips after every improvement

> Achieve guarantee to find a solution

4. Constraint weighting

- > Cost function: $F(\vec{a}) = \sum w_i * C_i(\vec{a})$
- Increasing weights of a violated constraint in local minima

Other improvements

Problem: Undetermined Termination

- Set a limit max_tries for the algorithm when to stop
- but: we lose guarantee to find a solution

Anytime Behaviour

- Store best assignment found so far (minimal #broken constraints)
- Return assignment when we need one (no solution)

Random Walks

procedure: RandomWalk

- **Input** : A network $\mathfrak{R} = (X, D, C)$, probability p.
- **Output**: A solution iff the problem is consistent.

start with a random initial assignment \bar{a} .

while \bar{a} is not a solution do

- (i) **pick** a violated constraint C, randomly
- (ii) **choose** with probability p a variable-value pair $\langle x, a' \rangle$ for $x \in scope(C)$, or, with probability 1 - p, choose a variable-value pair $\langle x, a' \rangle$ that minimizes the value of the cost function when the value of x is changed to a'.
- (iii) Change x's value to a'.

end

return \bar{a} .

Eventually hits a satisfying assignment (if exists) 17 - 29

p and Simulated Annealing

> Optimal p values for specific problems

Extension: Simulated Annealing

- > Decrease p over time (by "cooling the temperature")
 - > more random jumps in earlier stages
 - > more greedy progress later

SLS + Inference

Goal: Smaller search space

- > use Inference methods as with systematic search
- > constraint propagation: performance varies
 - very helpful for removing many near-solutions
 - > not good for uniform problem structures

Recap: Cycle-cutset decomposition

Idea: Replace systematic search on cutset with SLS

Start with random cutset assignment

Repeat:

> calculate minimal cost in trees:

$$C(z_i \rightarrow a_i) = \sum_{children \ z_j} min_{a_j \in D_{z_j}} (C(z_j \rightarrow a_j) + R(z_i \rightarrow a_i, z_j \rightarrow a_j))$$

- > assign values with minimal cost to tree variables
- > greedily optimize cutset assignment (Local Search)

Example: Binary domains

1. Assign values to cutset variables

Set a **Root** for each tree

2. From leaves to root:

3. From root to leaves:

Assign values with minimal cost

1. Assign values to cutset variables

2. From leaves to root:

 $C(z_i \rightarrow a_i) = \sum_{\text{children } z_j} \min_{a_j \in D_{z_j}} (C(z_j \rightarrow a_j) + R(z_i \rightarrow a_i, z_j \rightarrow a_j))$ 27 - 29

3. From root to leaves:

Assign values with minimal cost

Summary

Stochastic Local Search

- > Approximates systematic search
- Greedy algorithms: Techniques to escape local minima
- Random Walk: combines greedy + random choices
- Combination with Inference methods can help

- Can work very well
- > but no guarantee of termination AND finding a solution