
Chapter 7
Stochastic Local Search

Michaja Pressmar
13.11.2014

2 - 29

Motivation
n-queens with Backtracking:

➢ guarantees to find all solutions

➢ reaches limit for big problems:

 Best backtracking methods

 solve up to 100-queens

➢ Stochastic search:

 1 million queens solvable

 in less than a minute

3 - 29

Systematic vs. Stochastic Search
0000

1000 2000 3000 4000q
1

q
2,3

q
4 1233 2413 3142 4233 43331232 2311

4 - 29

Greedy Local Search
➢ usually runs on complete instantiations (leaves)

➢ starts in a randomly chosen instantiation

➢ assignments aren't necessarily consistent

1233 2413 43331232 2311

Progressing:

➢ Local changes (of one variable assignment)

➢ Greedy, minimizing cost function (#broken constraints)

Stopping Criterion:

➢ Assignment is consistent (const function = 0)

5 - 29

Greedy SLS: Algorithm

6 - 29
4

Example
4-queens with SLS:

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0

Cost function value: 6

4

5

4

4

5

4 5

4

4

4

5

5

7 - 29
2

Example
4-queens with SLS:

Cost function value: 4

3

4

3

4

3 5

3

6 2

2

2

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0

4

8 - 29
1

Example
4-queens with SLS:

Cost function value:

2

2

2

1

2

1 4

3

5 2

4

2

3

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0

9 - 29
01

Example
4-queens with SLS:

Cost function value:

0

1

1

2

2

4

3

2 2

3

3

3

➢ starts in a randomly chosen instantiation

➢ random change of one assignment

➢ minimize #broken constraints

➢ stop when cost function = 0

10 - 29

Problem with SLS
➢ Search can get stuck in a local minimum or on a plateau

 → Algorithm never terminates

2

2

1

2

1 4

3

5 2

4

2

3

2

3 2

1 2

2

3 3

3

2

4 2

2Cost function value: 1Cost function value:

11 - 29

cost

Plateaus & Local Minima

3142114213421234 12421244

x

y

PlateauLocal Minimum

Global Minimum

12 - 29

Escaping local minima

1. Plateau Search

➢ Allow non-improving sideway steps

➢ Problem: running in circles

Plateau

cost

13 - 29

Escaping local minima

2. Tabu search

➢ Store last n variable-value assignments

➢ Use list to prevent backward moves

q
2
: 3

q
3
: 4

q
2
: 1

14 - 29

Escaping local minima

3. Random Restarts

➢ Restart algorithm in new random initialisation

➢ Can be combined with other escape-techniques

➢ Suggestions for restart:

➢ when no improvement is possible

➢ after max_flips steps without improvement (Plateau search)

➢ increase max_flips after every improvement

➢ Achieve guarantee to find a solution

15 - 29

Escaping local minima

4. Constraint weighting

➢ Cost function:

➢ Increasing weights of a violated constraint in local minima

Plateau

F (a⃗) = ∑
i
w i∗C i(a⃗)

16 - 29

Other improvements

Problem: Undetermined Termination

➢ Set a limit max_tries for the algorithm when to stop

➢ but: we lose guarantee to find a solution

Anytime Behaviour

➢ Store best assignment found so far (minimal #broken constraints)

➢ Return assignment when we need one (no solution)

17 - 29

Random Walks

Eventually hits a satisfying assignment (if exists)

18 - 29

p and Simulated Annealing

➢ Optimal p values for specific problems

Extension: Simulated Annealing

➢ Decrease p over time (by „cooling the temperature“)

➢ more random jumps in earlier stages

➢ more greedy progress later

19 - 29

SLS + Inference

Goal: Smaller search space

➢ use Inference methods as with systematic search

➢ constraint propagation: performance varies

➢ very helpful for removing many near-solutions

➢ not good for uniform problem structures

20 - 29

SLS with Cycle-Cutset

Recap: Cycle-cutset decomposition

21 - 29

SLS with Cycle-Cutset

Idea: Replace systematic search on cutset with SLS

➢ Start with random cutset assignment

Repeat:

➢ calculate minimal cost in trees:

➢ assign values with minimal cost to tree variables

➢ greedily optimize cutset assignment (Local Search)

C (zi→a i)= ∑
children z j

mi na j∈D z j
(C (z j→a j)+R(z i→ai , z j→a j))

22 - 29

SLS with Cycle-Cutset

=

>

>

=

=

<

= 1

Random init.

Example: Binary domains

1. Assign values to cutset variables

23 - 29

SLS with Cycle-Cutset

=

>

>

=

=

<
11

1

Set a Root for each tree

= 1

Random init.

24 - 29

SLS with Cycle-Cutset

=

>

>

=

=

<
11

1

= 1

Random init.

2. From leaves to root:

Calculate minimal cost values

00
0

1 2

0

0

1

C (zi→a i)= ∑
children z j

mi na j∈D z j
(C (z j→a j)+R(zi→ai , z j→a j))

25 - 29

SLS with Cycle-Cutset

0

=

>

>

=

=

<
11

1

= 1

Random init.

00
0

3. From root to leaves:

Assign values with minimal cost

0

1

11
1 2

0

0

1

26 - 29

SLS with Cycle-Cutset

1

=>

=

= ?

1

1 1

0

1. Assign values to cutset variables

27 - 29

SLS with Cycle-Cutset

=

>

>

=

=

<
00

0

2. From leaves to root:

Calculate minimal cost values

00
0

0 0

0

0

0

C (zi→a i)= ∑
children z j

mi na j∈D z j
(C (z j→a j)+R(zi→ai , z j→a j))

28 - 29

SLS with Cycle-Cutset

0

=

>

>

=

=

<
00

0

00
0

0 0

0

0

3. From root to leaves:

Assign values with minimal cost

0

1

0

01

29 - 29

Summary

Stochastic Local Search

➢ Approximates systematic search

➢ Greedy algorithms: Techniques to escape local minima

➢ Random Walk: combines greedy + random choices

➢ Combination with Inference methods can help

➢ Can work very well

➢ but no guarantee of termination AND finding a solution

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

