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@ Backtracking

© Backjumping
@ Gaschnig's Backjumping
@ Graph-Based Backjumping
@ Conflict-Directed Backjumping

© Leaming
@ Graph-Based Learning

@ Conflict-Directed Learning



Backtracking

Backtracking

@ Backtracking is a basic algorithm used to solve a CSP
@ Backtracking has to explore every node in a search tree

@ Search space can be reduced by Look-ahead
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Conflict-Directed Backjumping

Gaschnig's Backjumping
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Gaschnig's Backjumping
1 B j

Backjumping Graph- imping

Conflict-[ ackjumping

Dead-End

Definition (Dead-End)

@ A dead-end state at level i indicates that a current partial

instantiation aj = (a1, ..., aj) conflicts with every possible
value of xj11.

o (a1,...,a;) is called a dead-end state, and x;11 is called a
dead-end variable.
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Backjumping Graph- 1 Backjumping

Conflict-Dir ackjumping

Leaf Dead-End

Definition (Leaf Dead-End)

Let aj = (a1, ..., a;) be a consistent tuple. If a; is in conflict with
Xjt+1, It Is called a leaf dead-end and x; 1 is a leaf dead-end
variable.
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Culprit Variable

Definition (Culprit Variable)
Let aj = (a1, ..., a;) be a leaf dead-end.

@ The culprit index relative to a; is defined by
b = min{j <i| aj conflicts with xj41}.
@ We define the culprit variable of a; to be xp.
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Conflict-[ ackjumping

No-Good

Definition (No-Good)
Given a network R = (X, D, C)

@ Any partial instantiation a that does not appear in any
solution of R is called a no-good.

@ Minimal no-goods have no no-good subtuples.
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Backjumping Graph-
Con

Safe Jump

Definition (Safe Jump)

Let a; = (a1, ..., a;) be a leaf dead-end. x; is save when
e j<iand

e aj = (aj,...,aj) is a no-good
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Gaschnig’'s Backjumping Algorithm
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Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

‘ i < i+1; D! < Dj; latest; < 0;
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end
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Backjumping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while do
instantiate x; + SELECT-VALUE-GBJ;
if x; is null then
‘ i < latest;;
else
| i« i+1; Dj < Dj; latest; + O;
end
end

if / =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end
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Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
\ instantiate x; + SELECT-VALUE-GBJ:

if x; is null then
‘ i < latest;;
else
| i< i+41; D}« Dj; latest; < O;
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}
end
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Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo

instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

|

else

| i< i+41; D}« Dj; latest; < O;
end

end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end

Cedric Geissmann Look Back Search




Gaschnig's Bacl
Backjumping Graph 3
Conflict-

Gaschnig's Backjumping Algorithm

i <= 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; + SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else
\ i+ i+1; D! + Dj; latest; + 0;

end
end

if / =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end

Cedric Geissmann Look Back Search



Gaschnig's Bacl
Backjumping Graph 3
Conflict- imping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

| i< i+1; D/« Dj; latest; + O;
end
end
if i =0 then

‘ \return "inconsistent”

else
return instantiated values of {xy,...,xn}

end
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Backjumping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo

instantiate x; + SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

| i« i+1; D}« Dj; latest; < O;
end
end

if i =0 then
| return "inconsistent”

else

‘ ‘ return instantiated values of {xi,...,xn} ‘

end
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SELECT-VALUE-GBJ

SELECT-VALUE-GBJ
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SELECT-VALUE-GBJ

while | D! is not empty| do

select an arbitrary element a € D,f, and remove a from D,f;
consistent < true; k + 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(ay, x; = a) then
| consistent < false
else
| k< k+1
end

end
if consistent then return a ;

end
return null
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SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,f, and remove a from D,f;

consistent < true; k < 1;

while k < i and consistent do

if k > latest; then latest; < k ;

if not consistent(3x, x; = a) then
| consistent < false

else
| k+—k+1

end

end

if consistent then return a ;

end

return null
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SELECT-VALUE-GBJ

while D! is not empty do
select an arbitrary element a € D,f, and remove a from D;;

consistent < true:; k + 1;
while k < i and consistent do
if k > latest; then latest; + k ;

if not consistent(dx, x; = a) then
| consistent < false

else
| k+ k+1
end
end
if consistent then return a ;
end
return null
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SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
consistent < true;k < 1;

while | k < i and consistent‘ do
if k > latest; then latest; + k ;

if not consistent(ay, x; = a) then
| consistent < false

else
| k+— k+1
end

end
if consistent then return a ;

end
return null
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SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,{, and remove a from D,f;
consistent < true;k < 1;

while k < i and consistent do

if k > latest; then Jlatest; < k ;

if not consistent(dx, x; = a) then
| consistent + false

else
| k+ k+1
end
end
if consistent then return a ;
end
return null
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SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D/, and remove a from D;
consistent < true;k < 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(dx, x; = a) then

‘ ‘ consistent < false;

else
| k<+ k+1;
end
end
if consistent then return a ;
end
return null
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SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D/, and remove a from D;
consistent < true;k < 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(dx, x; = a) then
| consistent < false;

else
\
end
end

if consistent then return a :
end
return null
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SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,{, and remove a from D,f;
consistent < true;k <+ 1,

while k < i and consistent do

if kK > latest; then latest; < k ;

if not consistent(ay, x; = a) then
| consistent < false;

else
| k<« k+1;

end

end

if consistent then return a ;

end
return null
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SELECT-VALUE-GBJ

while D! is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
consistent < true;k <+ 1;
while k < i and consistent do
if k > latest; then latest; + k ;
if not consistent(ay, x; = a) then
| consistent < false;
else
| k+ k+1;
end

end
if consistent then return a ;

end

return null
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Backjumping Graph- d j
Conflic

Gaschnig's Backjumping

Jumps back to its culprit variable at leaf dead-ends.
Only performs safe jumps.

Performs a maximal jump but only in leaf dead-ends.

Uses simple backtracking on internal dead-ends.
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Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Graph-Based Backjumping
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Gaschnig's Backjumping
Backjumping Graph-Based Backjumping
Conflict-Directed Backjumping

Ancestor, Parent

Definition (Ancestor, Parent)

Ancestor set of a variable x
@ all variables that precede x
@ and are connected to x
The parent of a variable x

@ js the most recent variable in the ancestor set of x
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Conflict-Directed Backjump

Ancestor Example
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Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Invistit, Session

Definition (Invisit, Session)
Invisit of x;

@ Processing a variable coming from an earlier variable.
Session of x;

@ starts on invisit of x;

@ ends when at least as high as x;

@ holds all variables processed since invisit of x;

°

X; is included in its session

See example on whiteboard.
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Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Relevant Dead-Ends

Definition (Relevant Dead-Ends)

The relevant dead-ends of x;’s session are

@ just x; if x; is a leaf dead-end.

@ the union of its current relevant dead-ends and the ones
encountered in the session.

See example on whiteboard.

Cedric Geissmann Look Back Search



Backjumping

Conflict-

Induced Ancestors, Graph-Based Culprit

Definition (Induced Ancestors, Graph-Based Culprit)

The induced ancestor set of x;

@ is the union of all ancestors for every relevant dead-end in x;'s
session.

The graph-based culprit
@ is the induced parent of x;
@ or the latest variable in x;'s induced ancestor set.
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Induced Ancestors, Graph-Based Culprit Examples

Example
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Induced Ancestors, Graph-Based Culprit Examples

Example

o lhi({x})
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Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}
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Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}
o la({xa,x6})
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Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}

o l4y({xa,x6}) = {x1,x0,x3}
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Graph-Based Backjumping Algorithm

Graph-Based Backjumping Algorithm
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Backjumping

Graph-Based Backjumping Algorithm

‘compute anc(x;) for each x;;

i < 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; + SELECT-VALUE;
if x; is null then
| iprev < i; i < latest index in [j; li < [ U liprey, — {xi};
else
‘ i < i+1; D! < Dj; Ij < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else
return instantiated values of {xi,...,xn}

|
end
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Backjumping

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; l; < anc(x;);
while 1 </ <ndo
instantiate x; < SELECT-VALUE;
if x; is null then

else
‘ i < i+1; D! < Dj; Ij < anc(x;);
end

end
if i =0 then
| return "inconsistent”
else
| return instantiated values of {x1,...,xn}

end
Cedric Geissmann Look Back Search
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Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;
i< 1; D! < Dj; I; < anc(x;);
while do
instantiate x; « SELECT-VALUE;
if x; is null then
‘ iprev < i; i < latest index in [;; Ij <= I; U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end
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Backjumping

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; < SELECT-VALUE;
if x; is null then

| iprev < i; i latest index in [j; I < [ U liprey — {xi};
else

| i< i+1; D}« Dj; i < anc(x;);
end

end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end
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Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

\ iprev < i; i « latest index in [;; i < I; U liprey — {xi};

else
| i< i+1; D}« Dj; i < anc(x;);
end

end

if i =0 then

| return "inconsistent”
else

| return instantiated values of {x1,...,xn}
end
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Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);

end

end

if i =0 then

| return "inconsistent”
else

| return instantiated values of {xi,...,xn}
end
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Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else

‘ i< i+1; D! < Dj; I; < anc(x;);
end
end
if i =0 then

‘ ‘return ”inconsistent”‘

else
| return instantiated values of {x1,...,xn}
end
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Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;
i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; + SELECT-VALUE;
if x; is null then
‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else

‘ ‘ return instantiated values of {x1,...,xn} ‘

end
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Conflict-Directed Backjump

SELECT-VALUE

SELECT-VALUE
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Conflict-Directed B

SELECT-VALUE

while | D! is not empty | do

1

select an arbitrary element a € D,{, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end
return null
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SELECT-VALUE

while D! is not empty do

select an arbitrary element a € D;, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end
return null
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Conflict-Directed B

SELECT-VALUE

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
if consistent(d;_1,x; = a) then
|
end
end
return null
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Conflict-Directed B

SELECT-VALUE

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end
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Graph-Based Backjumping

@ Can also jump on internal dead-ends.

@ Only relies on information from the constraint graph.
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Conflict-Directed Backjumping
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Conflict-Directed Backjumping

@ Combines the ideas of Gaschnig's and Graph-Based
Backjumping.

@ When detecting a dead-end x;11, jump back to the latest
variable in its jumpback set.
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Learning
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Graph- Learning
. Conf Learning
Learning =

Learning

@ Learn from dead-ends to exclude further occur of the same
dead-ends.

@ Add no-goods to the constraints.

@ Better than backjumping, leads to a smaller tree.
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Graph-Based Learning

. Conflict-Directed Learning
Learning =

Graph-Based Learning

Uses graph information collected during the search

Learn the no-good from a dead-end, that the previous
conflicting variables may not be instantiated like this.

Small overhead, information does not need to be computed.

Disadvantage: No-goods can be very long and appear late in
the search tree.
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Graph-Based Learning

. Conflict-Directed Learning
Learning

Conflict-Directed Learning

Uses information gathered during the search.

Learn the no-good from a dead-end, that the previous
conflicting variables may not be instantiated like this.

Small overhead, information are already computed.

Better than Graph-Based Learning, no-goods occur earlier in
the search.
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