Look Back Search

Cedric Geissmann

University Basel

October 31, 2014



@ Backtracking

© Backjumping
@ Gaschnig's Backjumping
@ Graph-Based Backjumping
@ Conflict-Directed Backjumping

© Leaming
@ Graph-Based Learning

@ Conflict-Directed Learning



Backtracking

Backtracking

@ Backtracking is a basic algorithm used to solve a CSP
@ Backtracking has to explore every node in a search tree

@ Search space can be reduced by Look-ahead

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

red,

red,
blue

blue

I3

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

T
T3
24 blue

Cedric Geissmann Look Back Search



Backtracking

Motivation Example

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph- d Backjumpi
Conflict-Directed Backjumping

Gaschnig's Backjumping

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
1 B j

Backjumping Graph- imping

Conflict-[ ackjumping

Dead-End

Definition (Dead-End)

@ A dead-end state at level i indicates that a current partial

instantiation aj = (a1, ..., aj) conflicts with every possible
value of xj11.

o (a1,...,a;) is called a dead-end state, and x;11 is called a
dead-end variable.

Cedric Geissmann Look Back Search



Gaschnig's Backjumpin
Backjumping Graph 1 Backj

Confi

Dead-End Example

Cedric Geissmann ok Back Sear



Gaschnig's Backjumpin
Backjumping Graph 1 Backj

Confi

Dead-End Example

Ty
T3 green
T4 red  blue

Cedric Geissmann ok Back Sear



Gaschnig's Backjumping
Backjumping Graph- 1 Backjumping

Conflict-Dir ackjumping

Leaf Dead-End

Definition (Leaf Dead-End)

Let aj = (a1, ..., a;) be a consistent tuple. If a; is in conflict with
Xjt+1, It Is called a leaf dead-end and x; 1 is a leaf dead-end
variable.

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph- 1B mpin
Conflic Backjumping

Culprit Variable

Definition (Culprit Variable)
Let aj = (a1, ..., a;) be a leaf dead-end.

@ The culprit index relative to a; is defined by
b = min{j <i| aj conflicts with xj41}.
@ We define the culprit variable of a; to be xp.

Cedric Geissmann Look Back Search



s Backjumping
Backjumping € d Backjumping
Conf Directed Backjumpi

Culprit Variable Example

Cedric Geissmann Look Back Search



s Backjumping
Backjumping € d Backjumping
Conf Directed Backjumpi

Culprit Variable Example

red, red,
blue blue

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph- 1 Backjumping

Conflict-[ ackjumping

No-Good

Definition (No-Good)
Given a network R = (X, D, C)

@ Any partial instantiation a that does not appear in any
solution of R is called a no-good.

@ Minimal no-goods have no no-good subtuples.

Cedric Geissmann Look Back Search



Gaschnig's Backjumplng
Backjumping Graph-
Con

Safe Jump

Definition (Safe Jump)

Let a; = (a1, ..., a;) be a leaf dead-end. x; is save when
e j<iand

e aj = (aj,...,aj) is a no-good

Cedric Geissmann Look Back Search



Gaschnig's Backjumpin
Backjumping Graph 1 Backj

Confi

Safe Jump Example

red,

red,
blue, blue
yellow

Cedric Geissmann



Gaschnig's Backjumping Algorithm

Gaschnig’'s Backjumping Algorithm

Cedric Geissmann Look Back Search



Gaschnig's Bacl
Backjumping Graph 3
Conflict-

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

‘ i < i+1; D! < Dj; latest; < 0;
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end

Cedric Geissmann Look Back Search




Backjumping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while do
instantiate x; + SELECT-VALUE-GBJ;
if x; is null then
‘ i < latest;;
else
| i« i+1; Dj < Dj; latest; + O;
end
end

if / =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end

Cedric Geissmann Look Back Search




Gaschnig's Bacl
Backjumping Graph 3
Conflict-

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
\ instantiate x; + SELECT-VALUE-GBJ:

if x; is null then
‘ i < latest;;
else
| i< i+41; D}« Dj; latest; < O;
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}
end

Cedric Geissmann Look Back Search




Backjumping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo

instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

|

else

| i< i+41; D}« Dj; latest; < O;
end

end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end

Cedric Geissmann Look Back Search




Gaschnig's Bacl
Backjumping Graph 3
Conflict-

Gaschnig's Backjumping Algorithm

i <= 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; + SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else
\ i+ i+1; D! + Dj; latest; + 0;

end
end

if / =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end

Cedric Geissmann Look Back Search



Gaschnig's Bacl
Backjumping Graph 3
Conflict- imping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo
instantiate x; < SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

| i< i+1; D/« Dj; latest; + O;
end
end
if i =0 then

‘ \return "inconsistent”

else
return instantiated values of {xy,...,xn}

end

Cedric Geissmann Look Back Search



Backjumping

Gaschnig's Backjumping Algorithm

i < 1; D! < Dj; latest; < 0;
while 1 </ <ndo

instantiate x; + SELECT-VALUE-GBJ;
if x; is null then

‘ i < latest;;
else

| i« i+1; D}« Dj; latest; < O;
end
end

if i =0 then
| return "inconsistent”

else

‘ ‘ return instantiated values of {xi,...,xn} ‘

end

Cedric Geissmann Look Back Search



Backjumping

SELECT-VALUE-GBJ

SELECT-VALUE-GBJ

Cedric Geissmann Look Back Search



Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while | D! is not empty| do

select an arbitrary element a € D,f, and remove a from D,f;
consistent < true; k + 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(ay, x; = a) then
| consistent < false
else
| k< k+1
end

end
if consistent then return a ;

end
return null

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph- 1 B
Conflic

SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,f, and remove a from D,f;

consistent < true; k < 1;

while k < i and consistent do

if k > latest; then latest; < k ;

if not consistent(3x, x; = a) then
| consistent < false

else
| k+—k+1

end

end

if consistent then return a ;

end

return null

Cedric Geissmann Look Back Search




Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while D! is not empty do
select an arbitrary element a € D,f, and remove a from D;;

consistent < true:; k + 1;
while k < i and consistent do
if k > latest; then latest; + k ;

if not consistent(dx, x; = a) then
| consistent < false

else
| k+ k+1
end
end
if consistent then return a ;
end
return null

Cedric Geissmann Look Back Search




Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
consistent < true;k < 1;

while | k < i and consistent‘ do
if k > latest; then latest; + k ;

if not consistent(ay, x; = a) then
| consistent < false

else
| k+— k+1
end

end
if consistent then return a ;

end
return null

Cedric Geissmann Look Back Search



Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,{, and remove a from D,f;
consistent < true;k < 1;

while k < i and consistent do

if k > latest; then Jlatest; < k ;

if not consistent(dx, x; = a) then
| consistent + false

else
| k+ k+1
end
end
if consistent then return a ;
end
return null

Cedric Geissmann Look Back Search




Gaschnig's Backjumping
Backjumping Graph- 1 B
Conflic

SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D/, and remove a from D;
consistent < true;k < 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(dx, x; = a) then

‘ ‘ consistent < false;

else
| k<+ k+1;
end
end
if consistent then return a ;
end
return null

Cedric Geissmann Look Back Search




Gaschnig's Backjumping
Backjumping Graph- 1 B
Conflic

SELECT-VALUE-GBJ

while D/ is not empty do
select an arbitrary element a € D/, and remove a from D;
consistent < true;k < 1;
while k < i and consistent do
if k > latest; then latest; < k ;
if not consistent(dx, x; = a) then
| consistent < false;

else
\
end
end

if consistent then return a :
end
return null

Cedric Geissmann Look Back Search



Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while D! is not empty do

select an arbitrary element a € D,{, and remove a from D,f;
consistent < true;k <+ 1,

while k < i and consistent do

if kK > latest; then latest; < k ;

if not consistent(ay, x; = a) then
| consistent < false;

else
| k<« k+1;

end

end

if consistent then return a ;

end
return null

Cedric Geissmann Look Back Search



Gaschnig’
Backjumping Graph-
Conflic

SELECT-VALUE-GBJ

while D! is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
consistent < true;k <+ 1;
while k < i and consistent do
if k > latest; then latest; + k ;
if not consistent(ay, x; = a) then
| consistent < false;
else
| k+ k+1;
end

end
if consistent then return a ;

end

return null

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph- d j
Conflic

Gaschnig's Backjumping

Jumps back to its culprit variable at leaf dead-ends.
Only performs safe jumps.

Performs a maximal jump but only in leaf dead-ends.

Uses simple backtracking on internal dead-ends.

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Graph-Based Backjumping

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph-Based Backjumping
Conflict-Directed Backjumping

Ancestor, Parent

Definition (Ancestor, Parent)

Ancestor set of a variable x
@ all variables that precede x
@ and are connected to x
The parent of a variable x

@ js the most recent variable in the ancestor set of x

Cedric Geissmann Look Back Search



Backjumping
Conflict-Directed Backjump

Ancestor Example

Cedric Geissmann Look Back Search



Gaschnig's Backjumping
Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Invistit, Session

Definition (Invisit, Session)
Invisit of x;

@ Processing a variable coming from an earlier variable.
Session of x;

@ starts on invisit of x;

@ ends when at least as high as x;

@ holds all variables processed since invisit of x;

°

X; is included in its session

See example on whiteboard.

Cedric Geissmann Look Back Search



s Backjumping
Backjumping Graph-Based Backjumping

Conflict-Directed Backjumping

Relevant Dead-Ends

Definition (Relevant Dead-Ends)

The relevant dead-ends of x;’s session are

@ just x; if x; is a leaf dead-end.

@ the union of its current relevant dead-ends and the ones
encountered in the session.

See example on whiteboard.

Cedric Geissmann Look Back Search



Backjumping

Conflict-

Induced Ancestors, Graph-Based Culprit

Definition (Induced Ancestors, Graph-Based Culprit)

The induced ancestor set of x;

@ is the union of all ancestors for every relevant dead-end in x;'s
session.

The graph-based culprit
@ is the induced parent of x;
@ or the latest variable in x;'s induced ancestor set.

Cedric Geissmann Look Back Search



ckjumping
Backjumping Backjumping
Conf ted Backjumping

Induced Ancestors, Graph-Based Culprit Examples

Example

Cedric Geissmann Look Back Search



ckjumping
Backjumping Backjumping
Conf ted Backjumping

Induced Ancestors, Graph-Based Culprit Examples

Example

o lhi({x})

Cedric Geissmann Look Back Search



ckjumping
Backjumping Backjumping
Conf ted Backjumping

Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}

Cedric Geissmann Look Back Search



ckjumping
Backjumping Backjumping
Conf ted Backjumping

Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}
o la({xa,x6})

Cedric Geissmann Look Back Search



S jumping
Backjumping ckjumping
G 1 Backjumping

Induced Ancestors, Graph-Based Culprit Examples

Example

o li({xa}) = {x1, %}

o l4y({xa,x6}) = {x1,x0,x3}

Cedric Geissmann Look Back Search



Gasc
Backjumping Grapl
Confl

Graph-Based Backjumping Algorithm

Graph-Based Backjumping Algorithm

Cedric Geissmann Look Back Search



Backjumping

Graph-Based Backjumping Algorithm

‘compute anc(x;) for each x;;

i < 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; + SELECT-VALUE;
if x; is null then
| iprev < i; i < latest index in [j; li < [ U liprey, — {xi};
else
‘ i < i+1; D! < Dj; Ij < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else
return instantiated values of {xi,...,xn}

|
end

Cedric Geissmann Look Back Search



Backjumping

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; l; < anc(x;);
while 1 </ <ndo
instantiate x; < SELECT-VALUE;
if x; is null then

else
‘ i < i+1; D! < Dj; Ij < anc(x;);
end

end
if i =0 then
| return "inconsistent”
else
| return instantiated values of {x1,...,xn}

end
Cedric Geissmann Look Back Search

| iprev < i; i < latest index in [j; I < i U liprey —

{xi};



Gaschnig's
Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;
i< 1; D! < Dj; I; < anc(x;);
while do
instantiate x; « SELECT-VALUE;
if x; is null then
‘ iprev < i; i < latest index in [;; Ij <= I; U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {xi,...,xn}
end

Cedric Geissmann Look Back Search




Backjumping

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; < SELECT-VALUE;
if x; is null then

| iprev < i; i latest index in [j; I < [ U liprey — {xi};
else

| i< i+1; D}« Dj; i < anc(x;);
end

end

if i =0 then
| return "inconsistent”

else
| return instantiated values of {x1,...,xn}

end

Cedric Geissmann Look Back Search



Gaschnig's
Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

\ iprev < i; i « latest index in [;; i < I; U liprey — {xi};

else
| i< i+1; D}« Dj; i < anc(x;);
end

end

if i =0 then

| return "inconsistent”
else

| return instantiated values of {x1,...,xn}
end

Cedric Geissmann Look Back Search



Gaschnig's
Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);

end

end

if i =0 then

| return "inconsistent”
else

| return instantiated values of {xi,...,xn}
end

Cedric Geissmann Look Back Search



Gaschnig's
Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;

i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo

instantiate x; + SELECT-VALUE;
if x; is null then

‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else

‘ i< i+1; D! < Dj; I; < anc(x;);
end
end
if i =0 then

‘ ‘return ”inconsistent”‘

else
| return instantiated values of {x1,...,xn}
end

Cedric Geissmann Look Back Search




Gaschnig's
Backjumping Graph
Conflict-D

Graph-Based Backjumping Algorithm

compute anc(x;) for each x;;
i< 1; D! < Dj; I; < anc(x;);
while 1 </ <ndo
instantiate x; + SELECT-VALUE;
if x; is null then
‘ iprev < i; i < latest index in [;; Ij <= ;i U liprey — {xi};
else
‘ i< i+1; D! < Dj; I; < anc(x;);
end
end

if i =0 then
| return "inconsistent”

else

‘ ‘ return instantiated values of {x1,...,xn} ‘

end

Cedric Geissmann Look Back Search



Backjumping
Conflict-Directed Backjump

SELECT-VALUE

SELECT-VALUE

Cedric Geissmann Look Back Search



Backjumping
Conflict-Directed B

SELECT-VALUE

while | D! is not empty | do

1

select an arbitrary element a € D,{, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end
return null

Cedric Geissmann Look Back Search



s Backjumping
Backjumping Graph-Based Backjumping
Conflict-Directed Backjumping

SELECT-VALUE

while D! is not empty do

select an arbitrary element a € D;, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end
return null

Cedric Geissmann Look Back Search



Backjumping
Conflict-Directed B

SELECT-VALUE

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;
if consistent(d;_1,x; = a) then
|
end
end
return null

Cedric Geissmann Look Back Search



Backjumping
Conflict-Directed B

SELECT-VALUE

while D/ is not empty do
select an arbitrary element a € D,f, and remove a from D,f;

if consistent(3;_1,x; = a) then
| return a

end
end

Cedric Geissmann Look Back Search



Backjumping

Graph-Based Backjumping

@ Can also jump on internal dead-ends.

@ Only relies on information from the constraint graph.

Cedric Geissmann Look Back Search



Gaschnig's Backjumpi
Backjumping Graph-Based Backjumping
Conflict-Directed Backjumping

Conflict-Directed Backjumping

Cedric Geissmann Look Back Search



Backjumping Gra L«B'umL;_) :
ackjumping

Conflict-Directed Backjumping

@ Combines the ideas of Gaschnig's and Graph-Based
Backjumping.

@ When detecting a dead-end x;11, jump back to the latest
variable in its jumpback set.

Cedric Geissmann Look Back Search



Graph-B
Conflict-D

Learning

Learning

Cedric Geissmann ok Back Sear



Graph- Learning
. Conf Learning
Learning =

Learning

@ Learn from dead-ends to exclude further occur of the same
dead-ends.

@ Add no-goods to the constraints.

@ Better than backjumping, leads to a smaller tree.

Cedric Geissmann Look Back Search



Graph-Based Learning

. Conflict-Directed Learning
Learning =

Graph-Based Learning

Uses graph information collected during the search

Learn the no-good from a dead-end, that the previous
conflicting variables may not be instantiated like this.

Small overhead, information does not need to be computed.

Disadvantage: No-goods can be very long and appear late in
the search tree.

Cedric Geissmann Look Back Search



Graph-Based Learning

. Conflict-Directed Learning
Learning

Conflict-Directed Learning

Uses information gathered during the search.

Learn the no-good from a dead-end, that the previous
conflicting variables may not be instantiated like this.

Small overhead, information are already computed.

Better than Graph-Based Learning, no-goods occur earlier in
the search.

Cedric Geissmann Look Back Search



Questions?



	Backtracking
	Backjumping
	Gaschnig's Backjumping
	Graph-Based Backjumping
	Conflict-Directed Backjumping

	Learning
	Graph-Based Learning
	Conflict-Directed Learning


