
Seminar: Search and Optimization
4. An Introduction to Revision Control with Mercurial

Gabi Röger

Universität Basel

October 10, 2013

Revision Control First steps Distributed development Wrap-up

Revision Control

Revision Control First steps Distributed development Wrap-up

What’s Revision Control?

Manage multiple versions of files

Revision Control First steps Distributed development Wrap-up

Why should we use it?

Track the history: Who made when what changes?

Manage easily multiple versions of your work (e.g. when
refactoring)

Collaboration with others: Merging your work

Backup in case of mistakes

Revision Control First steps Distributed development Wrap-up

Revision Control Systems

CVS

old-style centralized revision control
cons: outdated dinosaur (don’t use it)

Subversion (svn)

old-style centralized revision control
pros: fine-grained access rights
cons: painful merging of changes; needs access to central server

Git and Mercurial (Hg)

distributed revision control
pros: fast, flexible, intelligent merging, allows different models
of collaboration
cons: not meant for fine-grained access-rights or
sub-repositories (albeit possible)

Revision Control First steps Distributed development Wrap-up

Installing Mercurial

Linux (Ubuntu):

Necessary: Mercurial
sudo apt-get install mercurial

Optional: GUI
TortoiseHg: sudo apt-get install tortoisehg

Optional: Graphical merge tool
Meld: sudo apt-get install meld or
Kdiff3: sudo apt-get install kdiff3

Windows: TortoiseHg http://tortoisehg.bitbucket.org/

Mac: for example MacHg
http://jasonfharris.com/machg/

Test installation with hg --version

http://tortoisehg.bitbucket.org/
http://jasonfharris.com/machg/

Revision Control First steps Distributed development Wrap-up

First steps

Revision Control First steps Distributed development Wrap-up

Creating a repository

hg init [DEST]

initialize new repository
(create subdirectory .hg in [DEST])

Example

$ hg init

make current directory a repository

$ hg init project

start a repository in directory project

(create it if it does not exist)

Revision Control First steps Distributed development Wrap-up

Before we begin

Who made what changes?
. Mercurial needs to know who you are

Edit configuration file

pathtorepository/.hg/hgrc for local settings

∼/.hgrc for global settings

Example (pathtorepository/.hg/hgrc)

[ui]

username = Gabi Roeger <gabriele.roeger@unibas.ch>

Revision Control First steps Distributed development Wrap-up

Adding files and commiting changes

hg add [OPTION]... [FILE]...

Puts file under revision control

hg commit [OPTION]... [FILE]...

commit changes of the specified files or all outstanding
changes
Option -m: specify log message (otherwise opens a text editor)

Example

$ echo "realy elaborated text" > important_text

$ hg add important_text

$ hg commit -m "added important text"

$ sed -i -e ’s/realy/really/’ important_text

$ hg commit -m "fixed typo"

Revision Control First steps Distributed development Wrap-up

Deleting files

hg remove [OPTION]... [FILE]...

hg rm [OPTION]... [FILE]...

deletes from file system and repository control

hg forget [FILE]...

removes files from repository control (on the next commit)

Example

$ touch file1 file2

$ hg add file1 file2

$ hg commit -m "added files"

$ hg rm file1

$ hg forget file2

$ hg commit -m "removed some files"

Revision Control First steps Distributed development Wrap-up

Status of the working directory

hg status [OPTION]... [FILE]...

hg st [OPTION]... [FILE]...

show changed files in the working directory

Important flags:

A added

M modified

R removed

! missing

? not tracked

Revision Control First steps Distributed development Wrap-up

Ignoring files

Patterns in file pathtorepository/.hgignore describe files that
should not be considered by hg commands (eg., hg st):

Syntax regexp: regular expressions, Python/Perl syntax
(default)

Syntax glob: shell-style glob

Example (pathtorepository/.hgignore)

syntax: regexp

program

\.o$

Example (pathtorepository/.hgignore)

syntax: glob

program

*.o

Revision Control First steps Distributed development Wrap-up

Reverting uncommited changes

hg revert [OPTION]... [FILE]

restore files to their checkout state
Option --all: revert all changes

. Modified files are saved with a .orig suffix before reverting.

Example

$ hg st

M foo.txt

$ hg revert foo.txt

$ hg st

? foo.txt.orig

Revision Control First steps Distributed development Wrap-up

History

hg log [OPTION]... [FILE]

show revision history of entire repository or files

Example

$ hg log

changeset: 3:a4a8975c32a8

tag: tip

user: Gabi Roeger <gabriele.roeger@unibas.ch>

date: Tue Sep 25 16:28:14 2012 +0200

files: file1 file2

description:

removed some files

changeset: 2:cc210a3f1a3e

...

Revision Control First steps Distributed development Wrap-up

Inspecting changes

hg diff ([-c REV] | [-r REV1 [-r REV2]]) [FILE]...

show diff for repository (or files)

Option -c: change made in revision

Option -r: difference between revision and working copy/other rev.

two revision arguments: compares those revisions

one revision argument: compares the revision to the working
directory

no revision argument: compares the parent revision to the
working directory

Revision Control First steps Distributed development Wrap-up

Moving through time

hg update [[-r] REV]

hg up [[-r] REV]

Switch working directory to revision (or newest revision)

hg parents [-r REV] [FILE]

Show parent revisions of working directory or revision

Revision Control First steps Distributed development Wrap-up

Getting help

Most commands have much more options than shown:

hg help COMMAND

show documentation for command

Example

$ hg help update

hg update [-c] [-C] [-d DATE] [[-r] REV]

aliases: up, checkout, co

update working directory (or switch revisions)

Update the repository’s working directory to the

specified changeset. If no changeset is specified,

update to the tip of the current named branch.

(...)

Revision Control First steps Distributed development Wrap-up

Distributed development

Revision Control First steps Distributed development Wrap-up

Repository architecture

Many possible alternatives

Good option for small non-hierarchical group of developers:
. One central repository:

central repository

Alice’s local repository

Bob’s local repository

Charlie’s local repository

Revision Control First steps Distributed development Wrap-up

Cloning

hg clone SOURCE [DEST]

create a copy of an existing repository

Example

$ hg clone ../project project-alice

$ hg clone http://hg.fast-downward.org fast-downward

Revision Control First steps Distributed development Wrap-up

Checking for incoming/outgoing changes

hg incoming [SOURCE]

hg in [SOURCE]

show new changesets found in source

hg outgoing [DEST]

hg out [DEST]

show changesets not found in the destination

Source or destination not specified
. default from .hg/hgrc

Revision Control First steps Distributed development Wrap-up

Transfering changes

hg pull [-u] [SOURCE]

pull changes from the specified source
default: does not update the working directory
option -u: automatically update after pulling

hg push [-f] [DEST]

push changes to the specified destination

Push aborts with error new remote head?

Pull first and merge divergent changes (next slide)

If you are sure that you actually want it and know why:
Use hg push -f to force new head to destination repository

Revision Control First steps Distributed development Wrap-up

Resolving divergent history

If you have several heads in the repository (usually after a pull)

hg heads

show current repository heads

hg merge [REV]

update current working directory with all changes made in the
requested revision since the last common predecessor.
(If no revision is specified, the working directory’s parent is a
head revision, and the current branch contains exactly one
other head, the other head is merged with by default.)
. Automated merge if possible
. Otherwise opens merge tool for manual merge
. Don’t forget to commit after merging

Revision Control First steps Distributed development Wrap-up

Finding the right contact person

hg annotate [-u] [-n] [-r REV] FILE

show changeset information by line for each file
Option -u: show user Option -n: show revision number

Example

$ hg annotate -un program.cpp

gabriele 1: #include <iostream>

gabriele 1:

gabriele 1: int main(int, char**)

bob 5: std::cout << "Bob and Alice say:";

bob 8: std::cout << "Hello world" << std::endl;

alice 6: std::cout << "The world says: Hello! ";

bob 8: std::cout << "Alice and Bob go home.";

gabriele 1:

Revision Control First steps Distributed development Wrap-up

Wrap-up

Revision Control First steps Distributed development Wrap-up

Characterization of commands

Communicating with other repository

Only reporting: incoming, outgoing
Changing: pull, push

Local commands

Only reporting: annotate, diff, heads, help, id, log,
status

Changing: add, commit, forget, init, merge, remove,
revert, update

Revision Control First steps Distributed development Wrap-up

Getting further

Interesting next topics:

branching
tagging revisions
backout old changesets

Tutorials and documentation:

http://hginit.com

basic example-driven tutorial
http://hgbook.red-bean.com

covering almost everything; also available as (printed) book

Sharing a repository

Quick-and-dirty: hg serve

Long-term: Use hosting service (https://bitbucket.org/)
or set up your own web-server accordingly

http://hginit.com
http://hgbook.red-bean.com
https://bitbucket.org/

	Revision Control
	First steps
	Distributed development
	Wrap-up

