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4. An Introduction to Revision Control with Mercurial Revision Control

4.1 Revision Control
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4. An Introduction to Revision Control with Mercurial Revision Control

What’s Revision Control?

Manage multiple versions of files
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4. An Introduction to Revision Control with Mercurial Revision Control

Why should we use it?

I Track the history: Who made when what changes?

I Manage easily multiple versions of your work (e.g. when
refactoring)

I Collaboration with others: Merging your work

I Backup in case of mistakes
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4. An Introduction to Revision Control with Mercurial Revision Control

Revision Control Systems

I CVS
I old-style centralized revision control
I cons: outdated dinosaur (don’t use it)

I Subversion (svn)
I old-style centralized revision control
I pros: fine-grained access rights
I cons: painful merging of changes; needs access to central server

I Git and Mercurial (Hg)

I distributed revision control
I pros: fast, flexible, intelligent merging, allows different models

of collaboration
I cons: not meant for fine-grained access-rights or

sub-repositories (albeit possible)
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4. An Introduction to Revision Control with Mercurial Revision Control

Installing Mercurial

I Linux (Ubuntu):
I Necessary: Mercurial

sudo apt-get install mercurial
I Optional: GUI

TortoiseHg: sudo apt-get install tortoisehg
I Optional: Graphical merge tool

Meld: sudo apt-get install meld or
Kdiff3: sudo apt-get install kdiff3

I Windows: TortoiseHg http://tortoisehg.bitbucket.org/

I Mac: for example MacHg
http://jasonfharris.com/machg/

Test installation with hg --version

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 7 / 29

4. An Introduction to Revision Control with Mercurial First steps

4.2 First steps
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4. An Introduction to Revision Control with Mercurial First steps

Creating a repository

I hg init [DEST]

initialize new repository
(create subdirectory .hg in [DEST])

Example

$ hg init

make current directory a repository

$ hg init project

start a repository in directory project

(create it if it does not exist)
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4. An Introduction to Revision Control with Mercurial First steps

Before we begin

Who made what changes?
. Mercurial needs to know who you are

Edit configuration file

I pathtorepository/.hg/hgrc for local settings

I ∼/.hgrc for global settings

Example (pathtorepository/.hg/hgrc)

[ui]

username = Gabi Roeger <gabriele.roeger@unibas.ch>
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4. An Introduction to Revision Control with Mercurial First steps

Adding files and commiting changes

I hg add [OPTION]... [FILE]...

Puts file under revision control

I hg commit [OPTION]... [FILE]...

commit changes of the specified files or all outstanding
changes
Option -m: specify log message (otherwise opens a text editor)

Example

$ echo "realy elaborated text" > important_text

$ hg add important_text

$ hg commit -m "added important text"

$ sed -i -e ’s/realy/really/’ important_text

$ hg commit -m "fixed typo"
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4. An Introduction to Revision Control with Mercurial First steps

Deleting files

I hg remove [OPTION]... [FILE]...

hg rm [OPTION]... [FILE]...

deletes from file system and repository control

I hg forget [FILE]...

removes files from repository control (on the next commit)

Example

$ touch file1 file2

$ hg add file1 file2

$ hg commit -m "added files"

$ hg rm file1

$ hg forget file2

$ hg commit -m "removed some files"
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4. An Introduction to Revision Control with Mercurial First steps

Status of the working directory

hg status [OPTION]... [FILE]...

hg st [OPTION]... [FILE]...

show changed files in the working directory

Important flags:

A added

M modified

R removed

! missing

? not tracked
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4. An Introduction to Revision Control with Mercurial First steps

Ignoring files

Patterns in file pathtorepository/.hgignore describe files that
should not be considered by hg commands (eg., hg st):

I Syntax regexp: regular expressions, Python/Perl syntax
(default)

I Syntax glob: shell-style glob

Example (pathtorepository/.hgignore)

syntax: regexp

program

\.o$

Example (pathtorepository/.hgignore)

syntax: glob

program

*.o
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4. An Introduction to Revision Control with Mercurial First steps

Reverting uncommited changes

hg revert [OPTION]... [FILE]

restore files to their checkout state
Option --all: revert all changes

. Modified files are saved with a .orig suffix before reverting.

Example

$ hg st

M foo.txt

$ hg revert foo.txt

$ hg st

? foo.txt.orig
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4. An Introduction to Revision Control with Mercurial First steps

History

I hg log [OPTION]... [FILE]

show revision history of entire repository or files

Example

$ hg log

changeset: 3:a4a8975c32a8

tag: tip

user: Gabi Roeger <gabriele.roeger@unibas.ch>

date: Tue Sep 25 16:28:14 2012 +0200

files: file1 file2

description:

removed some files

changeset: 2:cc210a3f1a3e

...
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4. An Introduction to Revision Control with Mercurial First steps

Inspecting changes

hg diff ([-c REV] | [-r REV1 [-r REV2]]) [FILE]...

show diff for repository (or files)

Option -c: change made in revision

Option -r: difference between revision and working copy/other rev.

I two revision arguments: compares those revisions

I one revision argument: compares the revision to the working
directory

I no revision argument: compares the parent revision to the
working directory
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4. An Introduction to Revision Control with Mercurial First steps

Moving through time

I hg update [[-r] REV]

hg up [[-r] REV]

Switch working directory to revision (or newest revision)

I hg parents [-r REV] [FILE]

Show parent revisions of working directory or revision
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4. An Introduction to Revision Control with Mercurial First steps

Getting help

Most commands have much more options than shown:

I hg help COMMAND

show documentation for command

Example

$ hg help update

hg update [-c] [-C] [-d DATE] [[-r] REV]

aliases: up, checkout, co

update working directory (or switch revisions)

Update the repository’s working directory to the

specified changeset. If no changeset is specified,

update to the tip of the current named branch.

(...)
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4. An Introduction to Revision Control with Mercurial Distributed development

4.3 Distributed development
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4. An Introduction to Revision Control with Mercurial Distributed development

Repository architecture

I Many possible alternatives

I Good option for small non-hierarchical group of developers:
. One central repository:

central repository

Alice’s local repository

Bob’s local repository

Charlie’s local repository
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4. An Introduction to Revision Control with Mercurial Distributed development

Cloning

hg clone SOURCE [DEST]

create a copy of an existing repository

Example

$ hg clone ../project project-alice

$ hg clone http://hg.fast-downward.org fast-downward
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4. An Introduction to Revision Control with Mercurial Distributed development

Checking for incoming/outgoing changes

I hg incoming [SOURCE]

hg in [SOURCE]

show new changesets found in source

I hg outgoing [DEST]

hg out [DEST]

show changesets not found in the destination

Source or destination not specified
. default from .hg/hgrc
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4. An Introduction to Revision Control with Mercurial Distributed development

Transfering changes

I hg pull [-u] [SOURCE]

pull changes from the specified source
default: does not update the working directory
option -u: automatically update after pulling

I hg push [-f] [DEST]

push changes to the specified destination

Push aborts with error new remote head?

I Pull first and merge divergent changes (next slide)

I If you are sure that you actually want it and know why:
Use hg push -f to force new head to destination repository
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4. An Introduction to Revision Control with Mercurial Distributed development

Resolving divergent history

If you have several heads in the repository (usually after a pull)

I hg heads

show current repository heads

I hg merge [REV]

update current working directory with all changes made in the
requested revision since the last common predecessor.
(If no revision is specified, the working directory’s parent is a
head revision, and the current branch contains exactly one
other head, the other head is merged with by default.)
. Automated merge if possible
. Otherwise opens merge tool for manual merge
. Don’t forget to commit after merging
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4. An Introduction to Revision Control with Mercurial Distributed development

Finding the right contact person

hg annotate [-u] [-n] [-r REV] FILE

show changeset information by line for each file
Option -u: show user Option -n: show revision number

Example

$ hg annotate -un program.cpp

gabriele 1: #include <iostream>

gabriele 1:

gabriele 1: int main(int, char**)

bob 5: std::cout << "Bob and Alice say:";

bob 8: std::cout << "Hello world" << std::endl;

alice 6: std::cout << "The world says: Hello! ";

bob 8: std::cout << "Alice and Bob go home.";

gabriele 1:
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4. An Introduction to Revision Control with Mercurial Wrap-up

4.4 Wrap-up
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4. An Introduction to Revision Control with Mercurial Wrap-up

Characterization of commands

I Communicating with other repository
I Only reporting: incoming, outgoing
I Changing: pull, push

I Local commands
I Only reporting: annotate, diff, heads, help, id, log,

status
I Changing: add, commit, forget, init, merge, remove,

revert, update
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4. An Introduction to Revision Control with Mercurial Wrap-up

Getting further

I Interesting next topics:
I branching
I tagging revisions
I backout old changesets

I Tutorials and documentation:
I http://hginit.com

basic example-driven tutorial
I http://hgbook.red-bean.com

covering almost everything; also available as (printed) book

I Sharing a repository
I Quick-and-dirty: hg serve
I Long-term: Use hosting service (https://bitbucket.org/)

or set up your own web-server accordingly
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