
Seminar: Search and Optimization
4. An Introduction to Revision Control with Mercurial

Gabi Röger

Universität Basel

October 10, 2013

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 1 / 29

Seminar: Search and Optimization
October 10, 2013 — 4. An Introduction to Revision Control with Mercurial

4.1 Revision Control

4.2 First steps

4.3 Distributed development

4.4 Wrap-up

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 2 / 29

4. An Introduction to Revision Control with Mercurial Revision Control

4.1 Revision Control

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 3 / 29

4. An Introduction to Revision Control with Mercurial Revision Control

What’s Revision Control?

Manage multiple versions of files

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 4 / 29

4. An Introduction to Revision Control with Mercurial Revision Control

Why should we use it?

I Track the history: Who made when what changes?

I Manage easily multiple versions of your work (e.g. when
refactoring)

I Collaboration with others: Merging your work

I Backup in case of mistakes

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 5 / 29

4. An Introduction to Revision Control with Mercurial Revision Control

Revision Control Systems

I CVS
I old-style centralized revision control
I cons: outdated dinosaur (don’t use it)

I Subversion (svn)
I old-style centralized revision control
I pros: fine-grained access rights
I cons: painful merging of changes; needs access to central server

I Git and Mercurial (Hg)

I distributed revision control
I pros: fast, flexible, intelligent merging, allows different models

of collaboration
I cons: not meant for fine-grained access-rights or

sub-repositories (albeit possible)

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 6 / 29

4. An Introduction to Revision Control with Mercurial Revision Control

Installing Mercurial

I Linux (Ubuntu):
I Necessary: Mercurial

sudo apt-get install mercurial
I Optional: GUI

TortoiseHg: sudo apt-get install tortoisehg
I Optional: Graphical merge tool

Meld: sudo apt-get install meld or
Kdiff3: sudo apt-get install kdiff3

I Windows: TortoiseHg http://tortoisehg.bitbucket.org/

I Mac: for example MacHg
http://jasonfharris.com/machg/

Test installation with hg --version

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 7 / 29

4. An Introduction to Revision Control with Mercurial First steps

4.2 First steps

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 8 / 29

http://tortoisehg.bitbucket.org/
http://jasonfharris.com/machg/

4. An Introduction to Revision Control with Mercurial First steps

Creating a repository

I hg init [DEST]

initialize new repository
(create subdirectory .hg in [DEST])

Example

$ hg init

make current directory a repository

$ hg init project

start a repository in directory project

(create it if it does not exist)

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 9 / 29

4. An Introduction to Revision Control with Mercurial First steps

Before we begin

Who made what changes?
. Mercurial needs to know who you are

Edit configuration file

I pathtorepository/.hg/hgrc for local settings

I ∼/.hgrc for global settings

Example (pathtorepository/.hg/hgrc)

[ui]

username = Gabi Roeger <gabriele.roeger@unibas.ch>

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 10 / 29

4. An Introduction to Revision Control with Mercurial First steps

Adding files and commiting changes

I hg add [OPTION]... [FILE]...

Puts file under revision control

I hg commit [OPTION]... [FILE]...

commit changes of the specified files or all outstanding
changes
Option -m: specify log message (otherwise opens a text editor)

Example

$ echo "realy elaborated text" > important_text

$ hg add important_text

$ hg commit -m "added important text"

$ sed -i -e ’s/realy/really/’ important_text

$ hg commit -m "fixed typo"

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 11 / 29

4. An Introduction to Revision Control with Mercurial First steps

Deleting files

I hg remove [OPTION]... [FILE]...

hg rm [OPTION]... [FILE]...

deletes from file system and repository control

I hg forget [FILE]...

removes files from repository control (on the next commit)

Example

$ touch file1 file2

$ hg add file1 file2

$ hg commit -m "added files"

$ hg rm file1

$ hg forget file2

$ hg commit -m "removed some files"

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 12 / 29

4. An Introduction to Revision Control with Mercurial First steps

Status of the working directory

hg status [OPTION]... [FILE]...

hg st [OPTION]... [FILE]...

show changed files in the working directory

Important flags:

A added

M modified

R removed

! missing

? not tracked

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 13 / 29

4. An Introduction to Revision Control with Mercurial First steps

Ignoring files

Patterns in file pathtorepository/.hgignore describe files that
should not be considered by hg commands (eg., hg st):

I Syntax regexp: regular expressions, Python/Perl syntax
(default)

I Syntax glob: shell-style glob

Example (pathtorepository/.hgignore)

syntax: regexp

program

\.o$

Example (pathtorepository/.hgignore)

syntax: glob

program

*.o

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 14 / 29

4. An Introduction to Revision Control with Mercurial First steps

Reverting uncommited changes

hg revert [OPTION]... [FILE]

restore files to their checkout state
Option --all: revert all changes

. Modified files are saved with a .orig suffix before reverting.

Example

$ hg st

M foo.txt

$ hg revert foo.txt

$ hg st

? foo.txt.orig

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 15 / 29

4. An Introduction to Revision Control with Mercurial First steps

History

I hg log [OPTION]... [FILE]

show revision history of entire repository or files

Example

$ hg log

changeset: 3:a4a8975c32a8

tag: tip

user: Gabi Roeger <gabriele.roeger@unibas.ch>

date: Tue Sep 25 16:28:14 2012 +0200

files: file1 file2

description:

removed some files

changeset: 2:cc210a3f1a3e

...

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 16 / 29

4. An Introduction to Revision Control with Mercurial First steps

Inspecting changes

hg diff ([-c REV] | [-r REV1 [-r REV2]]) [FILE]...

show diff for repository (or files)

Option -c: change made in revision

Option -r: difference between revision and working copy/other rev.

I two revision arguments: compares those revisions

I one revision argument: compares the revision to the working
directory

I no revision argument: compares the parent revision to the
working directory

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 17 / 29

4. An Introduction to Revision Control with Mercurial First steps

Moving through time

I hg update [[-r] REV]

hg up [[-r] REV]

Switch working directory to revision (or newest revision)

I hg parents [-r REV] [FILE]

Show parent revisions of working directory or revision

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 18 / 29

4. An Introduction to Revision Control with Mercurial First steps

Getting help

Most commands have much more options than shown:

I hg help COMMAND

show documentation for command

Example

$ hg help update

hg update [-c] [-C] [-d DATE] [[-r] REV]

aliases: up, checkout, co

update working directory (or switch revisions)

Update the repository’s working directory to the

specified changeset. If no changeset is specified,

update to the tip of the current named branch.

(...)

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 19 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

4.3 Distributed development

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 20 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Repository architecture

I Many possible alternatives

I Good option for small non-hierarchical group of developers:
. One central repository:

central repository

Alice’s local repository

Bob’s local repository

Charlie’s local repository

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 21 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Cloning

hg clone SOURCE [DEST]

create a copy of an existing repository

Example

$ hg clone ../project project-alice

$ hg clone http://hg.fast-downward.org fast-downward

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 22 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Checking for incoming/outgoing changes

I hg incoming [SOURCE]

hg in [SOURCE]

show new changesets found in source

I hg outgoing [DEST]

hg out [DEST]

show changesets not found in the destination

Source or destination not specified
. default from .hg/hgrc

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 23 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Transfering changes

I hg pull [-u] [SOURCE]

pull changes from the specified source
default: does not update the working directory
option -u: automatically update after pulling

I hg push [-f] [DEST]

push changes to the specified destination

Push aborts with error new remote head?

I Pull first and merge divergent changes (next slide)

I If you are sure that you actually want it and know why:
Use hg push -f to force new head to destination repository

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 24 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Resolving divergent history

If you have several heads in the repository (usually after a pull)

I hg heads

show current repository heads

I hg merge [REV]

update current working directory with all changes made in the
requested revision since the last common predecessor.
(If no revision is specified, the working directory’s parent is a
head revision, and the current branch contains exactly one
other head, the other head is merged with by default.)
. Automated merge if possible
. Otherwise opens merge tool for manual merge
. Don’t forget to commit after merging

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 25 / 29

4. An Introduction to Revision Control with Mercurial Distributed development

Finding the right contact person

hg annotate [-u] [-n] [-r REV] FILE

show changeset information by line for each file
Option -u: show user Option -n: show revision number

Example

$ hg annotate -un program.cpp

gabriele 1: #include <iostream>

gabriele 1:

gabriele 1: int main(int, char**)

bob 5: std::cout << "Bob and Alice say:";

bob 8: std::cout << "Hello world" << std::endl;

alice 6: std::cout << "The world says: Hello! ";

bob 8: std::cout << "Alice and Bob go home.";

gabriele 1:

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 26 / 29

4. An Introduction to Revision Control with Mercurial Wrap-up

4.4 Wrap-up

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 27 / 29

4. An Introduction to Revision Control with Mercurial Wrap-up

Characterization of commands

I Communicating with other repository
I Only reporting: incoming, outgoing
I Changing: pull, push

I Local commands
I Only reporting: annotate, diff, heads, help, id, log,

status
I Changing: add, commit, forget, init, merge, remove,

revert, update

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 28 / 29

4. An Introduction to Revision Control with Mercurial Wrap-up

Getting further

I Interesting next topics:
I branching
I tagging revisions
I backout old changesets

I Tutorials and documentation:
I http://hginit.com

basic example-driven tutorial
I http://hgbook.red-bean.com

covering almost everything; also available as (printed) book

I Sharing a repository
I Quick-and-dirty: hg serve
I Long-term: Use hosting service (https://bitbucket.org/)

or set up your own web-server accordingly

Gabi Röger (Universität Basel) Search and Optimization October 10, 2013 29 / 29

http://hginit.com
http://hgbook.red-bean.com
https://bitbucket.org/

	Revision Control
	First steps
	Distributed development
	Wrap-up

