Seminar: Search and Optimization 2. Search Problems & Project Topics

Florian Pommerening

Universität Basel

September 26, 2013

Classical Search Problems ●000		Project

Informal Description

(Classical) search problems are one of the "easiest" and most important classes of AI problems.

Task of an agent:

- starting from an initial state
- apply actions
- to reach a goal state

Measure of performance: Minimize cost of actions

Formalizatio

Representation

Examples Project

Motivating Example: 15-Puzzle

9	2	12	6	1	2	3	4
5	7	14	13	 5	6	7	8
3		1	11	9	10	11	12
15	4	10	8	13	14	15	

More examples later on

Classical Assumptions

"Classical" assumptions:

- only one agent in the environment (single agent)
- always knows the complete world state (full observability)
- only the agent can change the state (static)
- finite amount of possible states/actions (discrete)
- actions change the state deterministically
- \rightsquigarrow each assumption can be generalized (not the focus of this seminar)

We omit "classical" in the following.

Classical Search Problems	Formalization ●0000		Project

Formalization

Classical Search Problems 0000	Formalization 0●000		Project ೦೦೦೦೦©೦೦೦೦೦೦
State Spaces			

To talk about algorithms for search problems we need a formal definition.

Definition (State Space)

A state space (or transition system) is a 6-tuple

- $\mathcal{S} = \langle S, A, \textit{cost}, T, \textit{s}_0, \textit{S}_{\star}
 angle$ where
 - S finite set of states
 - A finite set of actions
 - $cost: A \to \mathbb{R}^+_0$ action costs
 - T ⊆ S × A × S transition relation; deterministic in ⟨s, a⟩ (see next slide)
 - $s_0 \in S$ initial state
 - $S_{\star} \subseteq S$ set of goal states

Formalization

Representation

Examples Project

State Spaces: Transitions, Determinism

Definition (Transition, deterministic)

Let $S = \langle S, A, cost, T, s_0, S_{\star} \rangle$ be a state space.

The triples $\langle s, a, s' \rangle \in T$ are called transitions.

We say S has the transition $\langle s, a, s' \rangle$ if $\langle s, a, s' \rangle \in T$ and write $s \xrightarrow{a} s'$ ($s \rightarrow s'$, if we do not care about a).

Transitions are deterministic in $\langle s, a \rangle$: $s \xrightarrow{a} s_1$ and $s \xrightarrow{a} s_2$ with $s_1 \neq s_2$ is not allowed.

Classical		

Formalization

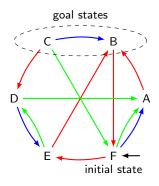
Representation

Examples Project

State Space: Example

State spaces are often visualized as directed graphs.

- states: nodes
- transitions: labeled edges (here: colors instead of labels)
- initial state: node marked with arrow
- goal states: marked (here: with ellipse)
- actions: edge labels
- action costs: given separately (or implicit = 1)
- paths to goal states correspond to solutions
- shortest paths correspond to optimal solutions



	Formalization 0000●		Project ©©000000
Charles Conserves Tau			

State Spaces: Terminology

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)

Let $S = \langle S, A, cost, T, s_0, S_{\star} \rangle$ be a state space.

Let $s, s' \in S$ be states with $s \to s'$.

- s is a predecessor of s'
- s' is a successor of s

If we have $s \xrightarrow{a} s'$, action *a* is applicable in *s*.

Classical	

Formalization

Representation 00

Examples Project

State Spaces: Terminology

We use common terminology from graph theory.

Definition (path)

Let
$$S = \langle S, A, cost, T, s_0, S_* \rangle$$
 be a state space.
Let $s^{(0)}, \ldots, s^{(n)} \in S$ be states and $\pi_1, \ldots, \pi_n \in A$ actions, with $s^{(0)} \xrightarrow{\pi_1} s^{(1)}, \ldots, s^{(n-1)} \xrightarrow{\pi_n} s^{(n)}$.

- $\pi = \langle \pi_1, \dots, \pi_n \rangle$ is a path from $s^{(0)}$ to $s^{(n)}$
- length of the path: $|\pi| = n$
- cost of the path: $cost(\pi) = \sum_{i=1}^{n} cost(\pi_i)$

Note:

- paths with length 0 are allowed
- sometimes the state sequence $\langle s^{(0)}, \ldots, s^{(n)} \rangle$ or the sequence $\langle s^{(0)}, \pi_1, s^{(1)}, \ldots, s^{(n-1)}, \pi_n, s^{(n)} \rangle$ are also called path

Classical		

Formalization

Representation 00

Examples Project

State Spaces: Terminology

Additional terminology:

Definition (solution, optimal, solvable, reachable, dead end)

Let $S = \langle S, A, cost, T, s_0, S_{\star} \rangle$ be a state space.

- A path from a state s ∈ S to a state s_{*} ∈ S_{*} is a solution for/of s.
- A solution for s_0 is a solution for/of S.
- Optimal solutions (for s) have minimal cost among all solutions (for s).
- State space S is solvable if a solution for S exists.
- State *s* is reachable if there is a path from *s*₀ to *s*.
- State *s* is a dead end if no solution for *s* exists.

Classical Search Problems	Representation		Project
	•0		

Representation of State Spaces

Classical Search Problems				Representation ○●	Project
_		C C	~		

Representation of State Spaces

How to get the state space into the computer?

- As an explicit graph: Nodes (states) and edges (transitions) represented explicitly, e. g. as adjacency lists or as adjacency matrix
 - impossible for large problems (needs too much space)
 - Dijkstra for small problems: $O(|S| \log |S| + |T|)$
- As a declarative description:
 - compact description as input
 state space exponentially larger than input
 - algorithms work directly on compact description (e.g. reformulation, simplification of problem)

Formalizatio

Representation

Examples Project

Representation of State Spaces

How to get the state space into the computer?

S As a black box: abstract interface for state spaces (used here)

abstract interface for state spaces

State space $S = \langle S, A, cost, T, s_0, S_{\star} \rangle$ as black box:

- init(): creates initial state Returns: the state *s*₀
- is-goal(s): tests if state s is goal state Returns: true if s ∈ S_{*}; false otherwise
- succ(s): lists all applicable actions and successors of s Returns: List of tuples $\langle a, s' \rangle$ with $s \xrightarrow{a} s'$
- cost(a): determines action cost of action a Returns: the non-negative number cost(a)

Classical Search Problems		Examples •••••••	Project

Examples

Examples for Search Problems

- "Toy problems": combinatorial puzzles (Rubik's Cube, 15-puzzle, Towers of Hanoi, ...)
- Scheduling, e.g. in factories
- Query optimization in databases
- NPCs in computer games
- Code optimization in compilers
- Verification of soft- and hardware
- Sequence alignment in bio-informatics
- Route planning (e.g. Google Maps)

• . . .

Thousands of practical examples!

Example 1: Blocks world

• The Blocks world is a traditional example problem in AI.

Task: blocks world

- Some colored blocks are on a table.
- They can be stacked to towers but only one block may be moved at a time.
- Our task is to reach a given goal configuration.

Formalizatio

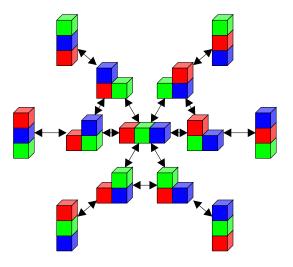
Representation

Examples Project

Blocks World with Three Blocks

(action names not shown;

initial state and goal states can be chosen for each problem)



Examples

Blocks World: Formal Definition

State space $(S, A, cost, T, s_0, S_*)$ blocks world with *n* Blocks

State space: blocks world

States S:

Partitioning of $\{1, 2, ..., n\}$ into non-empty (ordered) sequences

Examples:
$$\{\langle 1,2
angle,\langle 3
angle\}\sim$$

Examples:
$$\{\langle 1, 2 \rangle, \langle 3 \rangle\} \sim$$
 [1] \downarrow , $\{\langle$ Initial state s_0 and goal state S_{\star} :

different choices possible, e.g.:

•
$$s_0 = \{\langle 1, 3 \rangle, \langle 2 \rangle\}$$

•
$$S_{\star} = \{\{\langle 3, 2, 1 \rangle\}\}$$

,
$$\{\langle 1,2,3
angle\}\sim$$

Representation

Examples Project

Blocks World: Formal Definition

State space $\langle S, A, cost, T, s_0, S_{\star} \rangle$ blocks world with *n* Blocks

State space: blocks world

Actions A:

- $\{\textit{move}_{b,b'} \mid b, b' \in \{1, \dots, n\} \text{ with } b \neq b'\}$
 - Move block b on top of block b'.
 - Both have to be topmost block of a tower.
- $\{ totable_b \mid b \in \{1, \ldots, n\} \}$
 - Move block b on the table (\rightsquigarrow creates new tower).
 - Has to be topmost block of a tower.

Action costs *cost*: cost(a) = 1 for all actions *a* Formalizatio

Representation

Examples Project

Blocks World: Formal Definition

State space $\langle S, A, cost, T, s_0, S_{\star} \rangle$ blocks world with *n* Blocks

State space: blocks world

Transitions:

Example for action $a = move_{2,4}$: Transition $s \xrightarrow{a} s'$ exists if and only if

•
$$s = \{ \langle b_1, \ldots, b_k, 2 \rangle, \langle c_1, \ldots, c_m, 4 \rangle \} \cup X$$
 and

- in case k > 0: $s' = \{\langle b_1, \dots, b_k \rangle, \langle c_1, \dots, c_m, 4, 2 \rangle\} \cup X$
- in case k = 0: $s' = \{\langle c_1, \dots, c_m, 4, 2 \rangle\} \cup X$

Classical Search Problems		Examples	Project ၁೦೦೦೦©೦೦೦೦೦೦

Blocks World: Properties

Blocks	States	Blocks	States
1	1	10	58941091
2	3	11	824073141
3	13	12	12470162233
4	73	13	202976401213
5	501	14	3535017524403
6	4051	15	65573803186921
7	37633	16	1290434218669921
8	394353	17	26846616451246353
9	4596553	18	588633468315403843

- For every given initial state and goal state with *n* blocks simple algorithms can find solutions in *O*(*n*) time. (How?)
- Finding optimal solutions is NP-complete (for a compact problem representation).

Example 2: Logistics

Task: logistics

- Given: Cities with locations, objects to be delivered
- Goal: Transport objects to destination locations

Actions: logistics

- Objects can be loaded and unloaded to trucks and airplanes.
- Trucks can drive between locations in a city.
- Airplanes can fly between airports.

Complexity of Logistics

- Finding suboptimal solutions is polynomial.
- Finding optimal solutions is NP-hard.

Classical Search Problems		Examples	Project ၁೦೦೦೦©೦೦೦೦೦೦
Logistics: Exam	aple		

Goal: Transport red package from location A to location D.

- Ioad package in blue truck, drive to B, unload package
- ② load package in airplane, fly to C, unload package
- I drive green truck to C, load package, drive to D, unload package

Formalizatio

Representation

Examples Project

Example 3: Scanalyzer

- Business application (LemnaTec)
- Logistics for smart greenhouses
 - automated greenhouses with integrated imaging facilities
 - plants on conveyor belts

Image credit: LemnaTec

Classical	

Formalization

Representation 00

Examples Project

Scanalyzer

Difficulty

- Confined space
- Conveyor belts packed to capacity
- Conveyor belts only move in one direction
- Moving one plant moves others as well

Task: Scanalyzer

- Given a layout of conveyor belts
- Transport all plants through the imaging chamber
- Return every plant to its original position

Representation 00 Examples Project

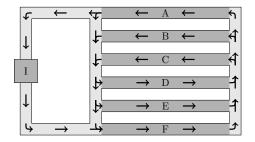
Scanalyzer: Actions

Actions: Scanalyzer

- Depend on the layout
- Rotate plant batches on two conveyor belts
- Rotate while routing through the imaging chamber

Complexity of Scanalyzer

- Depends on the layout
- Polynomial for simple, symmetric layouts



Formalization

Representation 00

Examples Project

Example 4: Sokoban

Image credit: KDE (KSokoban)

- Single player game
- Agent can push objects
- Goal: All objects are at destination locations

Classical	

Formalization

Representation 00 Examples Project

Sokoban

More Detailed Problem Description

- Given: Grid of locations, some locations contain objects
- Agent can push objects to free and adjacent locations
 - For example, to push an object to the right, the agent has to be located left to the object.
- Objects cannot be pulled

Complexity of Sokoban

- PSPACE-complete
- Particularly: Many dead-end states (e.g., objects in corners)

Formalization

Representation 00 Examples Project

Example 5: Rovers

- Route planning and task distribution
- Multiple rovers with different capabilities
- Collect samples and take pictures of landmarks
- Transmit pictures and analysis results to lander

Image credit: NASA

		Examples	Project 0©000000
Rovers			

Rover capabilities

- Movement
 - different road map for each rover
- Rock/soil analysis tools
 - optional
 - limited storage capacity
- Cameras
 - optional
 - different modes (high res, color, ...)
 - have to be calibrated first
 - line of sight needed for calibration and taking pictures
- Transmission
 - only possible if lander is visible

Classical	

Formalization

Representation 00

Examples Project

Rovers

Task: Rovers

- Given a set of rovers with their equipment and road maps
- Collect all designated samples and pictures
- Transmit results back to lander

Complexity of Rovers

- Finding suboptimal solutions is polynomial.
- Finding optimal solutions is NP-hard.

		Examples	Project
Other Examples			

- Depot
- Driverlog
- Freecell
- Woodworking
- Satellite
- Elevators
- . . .

Classical Search Problems		Project

Project

		Project >>>>>∞
Topic		

- 2-person team per topic
- Possible topics
 - Suggest your own search problem (ask us!)
 - Fallback: one of the examples
- Discuss your choice with Silvan and Jendrik next week (October 3)

		Project ○©O●OOOO
Roadmap		

• Phase 1: Uninformed search

Task: Implement some uninformed solver for your domain Submission deadline: 21 November 2013

• Phase 2: Informed search

Task: Implement some heuristic solver for your domain Submission deadline: 19 December 2013

• Phase 3: Improvements

Task: Improve your solver (depending on results after phase 2) Submission deadline: 30 January 2014

• Optional presentation of results

		Project ○○○○○@○○○○○
Proceeding		

Analysis

- Familiarize yourself with your domain
- How can you characterize it (e.g., size of state space, branching factor, complexity, ...)?
- What methods appear promising?
- Solve problems optimally or allow suboptimal plans?
- Consult your advisor

Classical Search Problems		Project ○○○○○@○○○●○C
Proceeding		

Implementation

-

- C++
- First strive for clean, readable code, then optimize it for efficiency
- Get feedback from you advisor frequently and already at an early stage (e.g., discuss your architecture before implementing it)

Classical Search Problems		Project ⊃○○○○©○○○○●○
Proceeding		

Evaluation

- Evaluate in each phase
- Plan your experiments: What do you want to find out? How can you accomplish this?
- As always, you are welcome to consult your advisor

Submission after each phase: Code and summary of evaluation results

		Project
Next steps		

Next steps:

- Assignment of projects and advisors
- Create mercurial repository and grant your advisor write access
- Schedule kickoff meeting with your advisor