

Other Examples	Other Examples					
2.5 Project						
Florian Pommerening (Universität Basel)	Search and Optimization	September 26, 2013 2 / 4				
2. Search Problems & Project Topics		Classical Search Probler				
Informal Description						
(Classical) search problen and most important class	ns are one of the "easiest" ses of AI problems.					
Task of an agent:						
starting from an init	ial state					
apply actions						

► to reach a goal state

Seminar: Search and Optimization

2.1 Classical Search Problems

2.2 Formalization

2.4 Examples

Blocks world Logistics

Scanalyzer Sokoban

Rovers

September 26, 2013 — 2. Search Problems & Project Topics

2.3 Representation of State Spaces

Measure of performance: Minimize cost of actions

6 / 42

8 / 42

Formalization

State Spaces: Transitions, Determinism

Definition (Transition, deterministic)

Let $S = \langle S, A, cost, T, s_0, S_* \rangle$ be a state space. The triples $\langle s, a, s' \rangle \in T$ are called transitions. We say S has the transition $\langle s, a, s' \rangle$ if $\langle s, a, s' \rangle \in T$ and write $s \xrightarrow{a} s'$ $(s \rightarrow s', \text{ if we do not care about } a)$. Transitions are deterministic in $\langle s, a \rangle$: $s \xrightarrow{a} s_1$ and $s \xrightarrow{a} s_2$ with $s_1 \neq s_2$ is not allowed.

Search and Optimization

Florian Pommerening (Universität Basel)

Formalizatio

September 26, 2013

9 / 42

State Space: Example

State spaces are often visualized as directed graphs.

- states: nodes
- transitions: labeled edges (here: colors instead of labels)
- initial state: node marked with arrow
- goal states: marked (here: with ellipse)
- actions: edge labels
- action costs: given separately (or implicit = 1)
- paths to goal states correspond to solutions
- shortest paths correspond to optimal solutions

Florian Pommerening (Universität Basel)

el) Search and Optimization

September 26, 2013 10 / 42

initial state

Formalization

goal states

2. Search Problems & Project Topics Formalization State Spaces: Terminology We use common terminology from graph theory. Definition (path) Let $S = \langle S, A, cost, T, s_0, S_{\star} \rangle$ be a state space. Let $s^{(0)}, \ldots, s^{(n)} \in S$ be states and $\pi_1, \ldots, \pi_n \in A$ actions, with $s^{(0)} \xrightarrow{\pi_1} s^{(1)} \cdots s^{(n-1)} \xrightarrow{\pi_n} s^{(n)}$ • $\pi = \langle \pi_1, \ldots, \pi_n \rangle$ is a path from $s^{(0)}$ to $s^{(n)}$ ▶ length of the path: $|\pi| = n$ • cost of the path: $cost(\pi) = \sum_{i=1}^{n} cost(\pi_i)$ Note: paths with length 0 are allowed • sometimes the state sequence $\langle s^{(0)}, \ldots, s^{(n)} \rangle$ or the sequence $\langle s^{(0)}, \pi_1, s^{(1)}, \ldots, s^{(n-1)}, \pi_n, s^{(n)} \rangle$ are also called path Florian Pommerening (Universität Basel) Search and Optimization September 26, 2013 12 / 42

State Spaces: Terminology

Additional terminology:

Definition (solution, optimal, solvable, reachable, dead end) Let $S = \langle S, A, cost, T, s_0, S_* \rangle$ be a state space.

- A path from a state s ∈ S to a state s_{*} ∈ S_{*} is a solution for/of s.
- A solution for s_0 is a solution for/of S.
- Optimal solutions (for s) have minimal cost among all solutions (for s).
- State space S is solvable if a solution for S exists.
- State s is reachable if there is a path from s_0 to s.

Search and Optimization

State *s* is a dead end if no solution for *s* exists.

Florian Pommerening (Universität Basel)

September 26, 2013 13 / 42

2. Search Problems & Project Topics

Representation of State Spaces

Formalization

Search and Optimization

2. Search Problems & Project Topics Representation of State Spaces 2.3 Representation of State Spaces

Representation of State Spaces

2. Search Problems & Project Topics

How to get the state space into the computer?

• As a black box: abstract interface for state spaces (used here)

abstract interface for state spaces

- State space $\mathcal{S} = \langle S, A, \textit{cost}, T, s_0, S_\star \rangle$ as black box:
 - init(): creates initial state Returns: the state s₀
 - is-goal(s): tests if state s is goal state Returns: true if s ∈ S_{*}; false otherwise
 - ▶ succ(s): lists all applicable actions and successors of s Returns: List of tuples (a, s') with $s \xrightarrow{a} s'$
 - cost(a): determines action cost of action a Returns: the non-negative number cost(a)

15 / 42

Representation of State Spaces

2. Search Problems & Project Topics

Example 1: Blocks world

► The Blocks world is a traditional example problem in AI.

Task: blocks world

- Some colored blocks are on a table.
- They can be stacked to towers but only one block may be moved at a time.
- Our task is to reach a given goal configuration.

State space: blocks world

States S:

Partitioning of $\{1, 2, ..., n\}$ into non-empty (ordered) sequences

Search and Optimization

Initial state s_0 and goal state S_{\star} :

different choices possible, e.g.:

- $\blacktriangleright \ s_0 = \{ \langle 1, 3 \rangle, \langle 2 \rangle \}$
- $\blacktriangleright S_{\star} = \{\{\langle 3, 2, 1 \rangle\}\}$

Florian Pommerening (Universität Basel)

September 26, 2013 21 / 42

Examples

Examples

2. Search Problems & Project Topics

	2. Search Problems & Project Topics	Examp			
	Blocks World: Formal Definition				
State space $\langle S, A, cost, T, s_0, S_{\star} \rangle$ blocks world with <i>n</i> Blocks					
	State space: blocks world				
	Actions A:				
	• $\{move_{b,b'} \mid b, b' \in \{1, \dots, n\} \text{ with } b \neq b'\}$				
	 Move block b on top of block b'. Both have to be topmost block of a tower. 				
	• $\{totable_b \mid b \in \{1, \ldots, n\}\}$				
	• Move block b on the table (\rightsquigarrow creates new tower).				
	Has to be topmost block of a tower.				
	Action costs <i>cost</i> :				
	cost(a) = 1 for all actions a				
		22 <i>/</i>			
	Florian Pommerening (Universitat Basel) Search and Optimization September 26, 2013	22 /			

2. Search Problems & Project Topics Ex								
Blocks World: Properties								
Blocks	States	Blocks	States					
1	1	10	58941091					
2	3	11	824073141					
3	13	12	12470162233					
4	73	13	202976401213					
5	501	14	3535017524403					
6	4051	15	65573803186921					
7	37633	16	1290434218669921					
8	394353	17	26846616451246353					
9	4596553	18	588633468315403843					
For every given initial state and goal state with n blocks								
simple algorithms can find solutions in $O(n)$ time. (How?)								
Finding optimal solutions is NP-complete								
(for a compact problem representation).								

Example 2: Logistics

Task: logistics

- Given: Cities with locations, objects to be delivered
- ► Goal: Transport objects to destination locations

Actions: logistics

• Objects can be loaded and unloaded to trucks and airplanes.

Search and Optimization

- ► Trucks can drive between locations in a city.
- Airplanes can fly between airports.

Complexity of Logistics

- ▶ Finding suboptimal solutions is polynomial.
- ► Finding optimal solutions is NP-hard.

Florian Pommerening (Universität Basel)

September 26, 2013 25 / 42

Example

2. Search Problems & Project Topics

Example 3: Scanalyzer

- Business application (LemnaTec)
- Logistics for smart greenhouses
 - automated greenhouses with integrated imaging facilities
 - plants on conveyor belts

Image credit: LemnaTec

Florian Pommerening (Universität Basel)

- For example, to push an object to the right, the agent has to be located left to the object.
- Objects cannot be pulled

Complexity of Sokoban

- PSPACE-complete
- Particularly: Many dead-end states (e.g., objects in corners)

Image credit: NASA

lander

different capabilities

Collect samples and

Transmit pictures and

analysis results to

take pictures of landmarks

2.5 Project

Florian Pommerening (Universität Basel)

Search and Optimization

September 26, 2013

34 / 42

Project

Examples

