
Seminar: Search and Optimization
Domain-Independent Construction of Pattern Database

Heuristics for Cost-Optimal-Planning
Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet and Sven Koenig

Silvan Sievers

Universität Basel

November 21, 2013



Pattern Collections Pattern Selection Experiments Conclusion

Repetition: Pattern Databases (PDBs)

Abstractions and PDBs:

Subset A ⊆ V of the problem’s variables called the pattern
Abstraction defined by A ignores all v ∈ V \ A
hA(s) is the minimum cost of reaching a goal state from state
s in the abstract state space
PDB for pattern A contains hA for all abstract states

PDB heuristics:

Successfully used for optimal planning
Several abstractions can be combined (maximum or sum)



Pattern Collections Pattern Selection Experiments Conclusion

Pattern Databases ctd.

Issues and open questions:

Quality of PDB heuristics strongly depends on choice of
patterns
Difficult to predict what pattern suits problem domain or even
instance
In domain-independent planning: not enough time/memory to
try lots of patterns

Contribution of this work:

Completely automatic and general pattern selection procedure



Pattern Collections Pattern Selection Experiments Conclusion

Agenda

1 Pattern Collections

2 Pattern Selection

3 Experiments

4 Conclusion



Pattern Collections Pattern Selection Experiments Conclusion

Pattern Collections



Pattern Collections Pattern Selection Experiments Conclusion

Pattern Collections

Motivation

Limited usefulness of single PDBs due to exponential growth
rate
Want to use collections of multiple patterns
Can always use maximum over PDBs and stay admissible
Want to sum over PDBs whenever possible

How do we best combine several PDBs?



Pattern Collections Pattern Selection Experiments Conclusion

Canonical Heuristic Function

Definition (Additivity criterion)

Let A and B be two patterns. If there exists no operator that
affects variables from both patterns, then h(s) = hA(s) + hB(s) is
an admissible and consistent heuristic.

Definition (Canonical Heuristic Function)

Let C = {P1, . . . ,Pk} be a collection of patterns. Let A be the
collection of all maximal (w.r.t. set inclucsion) additive subsets of
C . Then the canonical heuristic function is defined as:

hC (s) = max
S∈A

∑
P∈S

hP(s)



Pattern Collections Pattern Selection Experiments Conclusion

Canonical Heuristic Function (ctd.)

Example

Planning task with V = {v1, v2, v3} and pattern collection
C = {P1, . . . ,P4} with P1 = {v1, v2}, P2 = {v1}, P3 = {v2},
P4 = {v3}. Operators affect single variables or v1 and v3 at the
same time.

Maximal additive subsets?

Canonical heuristic function?

→ Whiteboard

From planning course Universität Freiburg, WS2008



Pattern Collections Pattern Selection Experiments Conclusion

Pattern Selection



Pattern Collections Pattern Selection Experiments Conclusion

Pattern Selection as Search

Local search:

Search space: pattern collections
Starting point: one pattern for each goal variable
Neighborhood: from C = {P1, . . . ,Pk}, select Pi ∈ C , v 6∈ Pi

and add Pk+1 = Pi ∪ {v} to C , resulting in C ′.
End: memory limit is reached or no improvement possible



Pattern Collections Pattern Selection Experiments Conclusion

Evaluating the Neighborhood

How to rank the relative quality of candidate pattern
collections?

Estimate search effort of the candidates
Choose neighbor with the highest improvement in search effort

What is “search effort”? Theoretical answer:

Number of node expansions of a tree search (IDA∗)
Depends on parameters of the search that can only be
estimated



Pattern Collections Pattern Selection Experiments Conclusion

Evaluating the Neighborhood (ctd.)

Observations:

No need for exact values, we are only interested in the best
candidate collection
Good heuristics for IDA∗ should be good for A∗

Use sampling to approximate the search effort

Under several assumptions and simplifications, evalution
reduces to:

Sample m states s1, . . . , sm through random walks in the
search space
Improvement of C ′ over C : number of sample states si for
which hC

′
(si ) > hC (si )



Pattern Collections Pattern Selection Experiments Conclusion

Comparing hC (s) and hC
′
(s)

Evaluating the comparison:

C ′ contains C and Pk+1:

hC
′
(s) > hC (s) iff hPk+1(s) +

∑
Pi∈S−{Pk+1}

hPi (s) > hC (s)

for some additive subset S ⊆ C ′ that includes Pk+1

What do we need:

hC (s) is a simple look-up
hPk+1 : want to avoid computing the PDB
Instead: Compute hPk+1 by searching with PDB for Pi serving
as heuristic



Pattern Collections Pattern Selection Experiments Conclusion

Experiments



Pattern Collections Pattern Selection Experiments Conclusion

Comparison against mean value evaluation1

Sokoban:

Search effort evaluation: solves 80 problems with 418730 nodes
expanded
Mean value evalution: solves 66 problems with 657380 nodes
expanded

Logistics 2000:

Same coverage
23992 vs 176850 nodes expanded

1Edelkamp, 2006



Pattern Collections Pattern Selection Experiments Conclusion

Conclusion



Pattern Collections Pattern Selection Experiments Conclusion

Conclusion

Summary:

New approach of automatically constructing good pattern
collections
Better resulting heuristic compared to previous work

Additional work on PDBs:

Change the additivity criterion: cost partitioning2

Middle ground: post-hoc optimization3

2Katz and Domshlak, 2010
3Pommerening et al., 2013


	Pattern Collections
	Pattern Selection
	Experiments
	Conclusion

