A General Theory of Additive State Space Abstractions by Yang, Culberson, Holte, Zahavi and Felner

Jendrik Seipp

Artificial Intelligence Group University of Basel

November 14, 2013

Introduction	All-or-nothing	Cost-splitting				
	0000	00	00	00	00	

Introduction

Introduction			
_	 		

Example Pancake Puzzle

Introduction				
Abstra	octions			

- Coarser version of state space (e.g. PDB)
- Homomorphic mapping
- Preserve paths
- Underestimate goal-distances
- Goal-distance heuristic admissible

Introduction			

Multiple abstractions

- Max of estimates is admissible
- Sum is usually not admissible
- Costs counted multiple times

Introduction				
Outline	е			

 \Rightarrow Divide each operator's cost among abstractions

1 All-or-nothing

2 Cost-splitting

3 Location-based costs

All-or-nothing	Cost-splitting		
0000			

All-or-nothing

	All-or-nothing ○●○○			
8-Puzz	zle – Max	imum		

	All-or-nothing 00●0			
8-Puz	zle – Sum			

	All-or-nothing 000●	Cost-splitting 00		Cost saturation	Conclusion
Panca	ke Puzzle				

	All-or-nothing 000●	Cost-splitting 00		Cost saturation	Conclusion
Panca	ke Piizzle				

• All operators change more than one object

All-or-nothing	Cost-splitting				
0000	••	00	00	00	

Cost-splitting

		Cost-splitting ○●		
Cost-s	plitting			

		Cost-splitting ○●		
Cost-s	plitting			

b^l = 2, b^a = 3 → c_i(l) = 1/2, c_i(a) = 1/3
h(021) = (1/3 + 1/2) + (1/2 + 1/3) = 5/3

All-or-nothing	Cost-splitting	Location-based costs		
		•0		

Location-based costs

			Location-based costs ○●		
Locati	on-based	costs			

- Assign each operator o a location loco
- c_i(o) = c(o) if o changes loc_o to a distinguished value in abstraction i and 0 otherwise

			Location-based costs ○●		
Locati	on-based	costs			

- Assign each operator o a location loco
- c_i(o) = c(o) if o changes loc_o to a distinguished value in abstraction i and 0 otherwise

			Location-based costs ○●		
Locati	on-based	costs			

- Assign each operator o a location loco
- c_i(o) = c(o) if o changes loc_o to a distinguished value in abstraction i and 0 otherwise

 loc(o) = left-most position. Move to middle state costs 1, everything else 0

•
$$h(021) = (1+0) + (1+0) = 2$$

		Results ●0	

Results

			Results ○●	
Resulte	5			

	cost	loc
TopSpin Puzzle	\checkmark	Х
Pancake Puzzle	Х	\checkmark
Rubik's Cube	Х	Х

Introduction All-or-nothing Cost-splitting Location-based costs Results Cost saturation Conclusio						Cost saturation ●0	
---	--	--	--	--	--	-----------------------	--

Cost saturation

			Cost saturation ○●	
Cost s	aturation			

			Cost saturation ○●	
Cost s	aturation			

All-or-nothing	Cost-splitting				Conclusion
0000	00	00	00	00	

Conclusion

				Conclusion
Conclu	usion			

- $\bullet~\mbox{Cost}$ partitioning $\rightarrow~\mbox{additive}$ abstractions
- Usefulness varies between problems