
Pattern Databases
by Joseph C. Culberson
and Jonathan Schaeffer
Presented by Patrick von Reth

1

The 15-Puzzle

 15-Puzzle is a permutation problem.

 Problems where a set of operators converts one permutation into another

 Reach goal permutation with as few operators as possible

 Another prominent example is the Rubik’s Cube.

2

The 15-Puzzle

1 5 6 3

12 9 4 2

15 11 10 7

13 14 0 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

3

Manhattan Distance

 Distance between two positions in a grid

 Sum of the vertical and horizontal distance

 Example: Distance for the empty tile to its goal position.

 Manhattan heuristic: Sum of distances for all tiles to their goal position.

1 5 2 3

4 9 6 7

8 10 11 0

12 13 14 15

4

Linear conflict heuristic

 Extension of the Manhattan heuristic.

 If two tiles are in linear conflict they have to surround each other.

Increase the heuristic by two.

 Example: The Manhattan distance for tile 4 and for tile 7 is two.

0 1 2 3

5 7 4 6

8 9 10 11

12 13 14 15

5

Pattern databases

 Human-like approach to solve a complex permutation problems:

 Find a partial solution and thus reduce the complexity of the problem.

 Find an optimal path to a partial solution

 Distance to the partial solution is a lower bound for the complete solution.

 Precompute the distance to the partial solution, for all permutations, and

store it in a database.

6

Fringe and Corner pattern

 The Corner pattern The Fringe pattern

0

8 9 10

12 13 14 15

0 3

7

11

12 13 14 15

7

Upper bounds

 Used to eliminate the last iteration of the IDA* search.

 Upper bound for the 15-Puzzle

 For the fringe pattern the upper bound is 61 moves.

 For the remaining 8-Puzzle the upper bound is 31 moves.

 This results in an upper limit of 92 moves to completely solve the 15-Puzzle.

 Different patterns result in different upper bounds.

8

Solution Databases

 If obtaining the optimal solution path is to expensive.

 Precompute optimal solution for sub-goals together with the moves.

9

Symmetry

 Can be used to simplify the search tree.

 For example reflections can be used to obtain additional cost bounds.

 The maximum of all lower bounds retrieved is then used.

 Two diagonal reflections , (0,15) and (12,3).

 The vertical and the horizontal reflection.

10

Symmetry - Reflections

 Applying the diagonal reflection (0,15) on a path yields the mirrored path.

 Can be achieved by remapping the operators

 d->r, r->d, l->u, u->l

 Used to retrieve the cost for the reflected state.

 With some modifications this can also be done for the other reflections.

11

Symmetry - Cost retrieved using

reflections

 Goal state and its horizontal mirror.

 Distance of the two state is three.

 Distance of three is used as penalty on the retrieved cost for the mirror state.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3 0

4 5 6 7

8 9 10 11

12 13 14 15

12

Symmetry – Reflection penalties

 Cost for diagonal reflection (0,15) and its mirrored state are the same.

 Penalty for the horizontal and the vertical reflection is 3.

 Penalty for the diagonal (12,3) reflection is 6.

13

Combination of patterns

 Both pattern databases are used for the heuristic calculation.

 Using maximum over both databases would be expensive (memory)

 Split up in 16 databases each.

 Lookup defined by empty tile and its mirrors.

 Only one half of each database is loaded.

F C F C

C F C F

F C F C

C F C F

14

Linear conflict heuristic compared to

pure Manhattan distance heuristic

 Presented results are based on the Manhattan distance.

 Linear conflict heuristic:

 Search tree size is reduced noticeable.

 Pattern database with linear conflict heuristic:

 Only minor improvement.

15

Results (1)

 Combination of both pattern databases is better than individual

improvements.

 Many enhancements possible

 Don’t use the diagonal (12,3) because of the penalty of 6.

 Don’t lookup every possible reflection.

16

Results (2)

 Without those improvements:

 12 times faster than a naïve implementation only using the Manhattan distance.

 1.5 times faster than using the linear conflict heuristic

17

Conclusion

 Computational workload increased.

 Computation is done before the actual search.

 Computation is done once, cost will amortise over time.

 Speedup of 12 and reduction of the search tree size by 1038-fold is

impressive.

 Pattern databases are better than the linear conflict heuristic.

 Adaptable for different problems.

18

Questions ?
19

