# Pattern Databases by Joseph C. Culberson and Jonathan Schaeffer

Presented by Patrick von Reth

#### The 15-Puzzle

- 15-Puzzle is a permutation problem.
  - Problems where a set of operators converts one permutation into another
  - Reach goal permutation with as few operators as possible
- Another prominent example is the Rubik's Cube.

#### The 15-Puzzle





|    | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

#### Manhattan Distance

- Distance between two positions in a grid
- Sum of the vertical and horizontal distance
- Example: Distance for the empty tile to its goal position.
- Manhattan heuristic: Sum of distances for all tiles to their goal position.

| 1- | -5 | 2   | 3  |
|----|----|-----|----|
| 4  | 9  | 6   | 7  |
| 8  | 10 | 1•1 |    |
| 12 | 13 | 14  | 15 |

#### Linear conflict heuristic

- Extension of the Manhattan heuristic.
- If two tiles are in linear conflict they have to surround each other.
  - Increase the heuristic by two.
- Example: The Manhattan distance for tile 4 and for tile 7 is two.

|    | 1  | 2             | 3  |
|----|----|---------------|----|
| 5  | 7  | <del>-4</del> | 6  |
| 8  | 9  | 10            | 11 |
| 12 | 13 | 14            | 15 |

#### Pattern databases

- Human-like approach to solve a complex permutation problems:
  - Find a partial solution and thus reduce the complexity of the problem.
- Find an optimal path to a partial solution
- Distance to the partial solution is a lower bound for the complete solution.
- Precompute the distance to the partial solution, for all permutations, and store it in a database.

# Fringe and Corner pattern

The Fringe pattern

|    |    |    | 3  |
|----|----|----|----|
|    |    |    | 7  |
|    |    |    | 11 |
| 12 | 13 | 14 | 15 |

The Corner pattern

| 8  | 9  | 10 |    |
|----|----|----|----|
| 12 | 13 | 14 | 15 |

### Upper bounds

- Used to eliminate the last iteration of the IDA\* search.
- Upper bound for the 15-Puzzle
  - For the fringe pattern the upper bound is 61 moves.
  - ► For the remaining 8-Puzzle the upper bound is 31 moves.
  - ► This results in an upper limit of 92 moves to completely solve the 15-Puzzle.
- Different patterns result in different upper bounds.

#### Solution Databases

- If obtaining the optimal solution path is to expensive.
  - Precompute optimal solution for sub-goals together with the moves.

## Symmetry

- Can be used to simplify the search tree.
- For example reflections can be used to obtain additional cost bounds.
  - The maximum of all lower bounds retrieved is then used.
  - Two diagonal reflections , (0,15) and (12,3).
  - The vertical and the horizontal reflection.

#### Symmetry - Reflections

- Applying the diagonal reflection (0,15) on a path yields the mirrored path.
- Can be achieved by remapping the operators
  - d->r, r->d, l->u, u->l
- Used to retrieve the cost for the reflected state.
- With some modifications this can also be done for the other reflections.

# Symmetry - Cost retrieved using reflections

- Goal state and its horizontal mirror.
  - Distance of the two state is three.
  - Distance of three is used as penalty on the retrieved cost for the mirror state.

|    | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

| 1  | 2  | 3  |    |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

# Symmetry – Reflection penalties

- Cost for diagonal reflection (0,15) and its mirrored state are the same.
- Penalty for the horizontal and the vertical reflection is 3.
- Penalty for the diagonal (12,3) reflection is 6.

## Combination of patterns

- Both pattern databases are used for the heuristic calculation.
  - Using maximum over both databases would be expensive (memory)

- Split up in 16 databases each.
- Lookup defined by empty tile and its mirrors.
- Only one half of each database is loaded.

| F | С | F | С |
|---|---|---|---|
| С | F | U | F |
| F | C | F | C |
| С | F | С | F |

# Linear conflict heuristic compared to pure Manhattan distance heuristic

- Presented results are based on the Manhattan distance.
  - Linear conflict heuristic:
    - Search tree size is reduced noticeable.
  - Pattern database with linear conflict heuristic:
    - Only minor improvement.

### Results (1)

- Combination of both pattern databases is better than individual improvements.
- Many enhancements possible
  - Don't use the diagonal (12,3) because of the penalty of 6.
  - Don't lookup every possible reflection.

# Results (2)

- Without those improvements:
  - 12 times faster than a naïve implementation only using the Manhattan distance.
  - 1.5 times faster than using the linear conflict heuristic

#### Conclusion

- Computational workload increased.
  - Computation is done before the actual search.
  - Computation is done once, cost will amortise over time.
- Speedup of 12 and reduction of the search tree size by 1038-fold is impressive.
- Pattern databases are better than the linear conflict heuristic.
- Adaptable for different problems.

Questions?