
Implementing Fast Heuristic Search Code

E. Burns, M. Hatem, M. J. Leighton, W. Ruml
(presentation by G. Röger)

Universität Basel

October 17, 2013



Motivation and Background IDA∗ A∗ Conclusion

Motivation and Background



Motivation and Background IDA∗ A∗ Conclusion

Motivation

Theoretical comparison of different search methods often
hard/impossible

Very often: Empirical comparison by means of experiments

Performance depends on implementation

Usually no implementation details in publications



Motivation and Background IDA∗ A∗ Conclusion

Aim of the paper

Example:
A∗ and IDA∗ in C++
with Manhattan distance heuristic on 15-puzzle

Demonstrate influence of implementation

Reveal “tricks” of state-of-the-art implementations and
measure their influence

Focus on solving time



Motivation and Background IDA∗ A∗ Conclusion

Reminder: Manhattan Distance Heuristic

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Manhattan distance MDt(s):
Distance from position of tile t in s to goal position of t
Example: MD1(s) = 4

Manhattan distance heuristic hMD(s) =
∑

Tiles t MDt(s)



Motivation and Background IDA∗ A∗ Conclusion

IDA∗



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation

Domain-independent IDA∗ implementation

Virtual methods Initial, h, IsGoal, Expand, Release

Opaque states

IDAStar(initial configuration):

state = Initial(initial configuration)

f-limit = 0

while f-limit != infinity:

f-limit = LimitedDFS(state, 0, f-limit)

return unsolvable



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation

LimitedDFS(state, g, f-limit):

if g + h(state) > f-limit then

return g + state.h

if IsGoal(state) then

extract solution and stop search

next-limit = infinity

for each child in Expand(state) do

rec-limit = LimitedDFS(child, g + 1, f-limit)

Release(child)

next-limit = min(next-limit, rec-limit)

return next-limit



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation

Sliding tile puzzle

State consists of

field blank for blank position
field h for heuristic estimate
array tiles with 16 integers maps positions to tiles

h, IsGoal and Release simple one-liners

Initial creates initial state as specified in input

Dynamics of domain in method Expand



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation: Expand

Expand (State s):

vector childs // creates an empty vector

if s.blank >= Width then

childs.push(Child(s, s.blank - Width))

if s.blank % Width > 0 then

childs.push(Child(s, s.blank - 1))

if s.blank % Width < Width - 1 then

childs.push(Child(s, s.blank + 1))

if s.blank < NTiles - Width then

childs.push(Child(s, s.blank + Width))

return childs



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation: Child

Child (State s, int newblank):

State child = new State

Copy s.tiles to child.tiles

child.tiles[s.blank] = s.tiles[newblank]

child.blank = newblank

child.h = Manhattan_dist(child.tiles, child.blank)

return child



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation: Performance

Solves all 100 benchmark tasks in 9 298 seconds.



Motivation and Background IDA∗ A∗ Conclusion

1. Improvement: Incremental Manhattan Distance

State s with tile t∗ at position from pos

Successor state s ′ with tile t∗ at position to pos

Only MD of tile t∗ changes

hMD(s ′) =
∑
Tiles t

MDt(s
′)

= hMD(s)−MDt∗(s) + MDt∗(s ′)

Idea: Precompute MD difference of tile t∗ when moving it
from from pos to to pos

Lookup table MDInc[tile][from pos][to pos]



Motivation and Background IDA∗ A∗ Conclusion

1. Improvement: Incremental Manhattan Distance

Child (State s, int newblank):

State child = new State

Copy s.tiles to child.tiles

child.tiles[s.blank] = s.tiles[newblank]

child.blank = newblank

child.h = Manhattan_dist(child.tiles, child.blank)

return child

→ Solves all instances in 5 476 seconds (previously 9 298 seconds)



Motivation and Background IDA∗ A∗ Conclusion

1. Improvement: Incremental Manhattan Distance

Child (State s, int newblank):

State child = new State

Copy s.tiles to child.tiles

child.tiles[s.blank] = s.tiles[newblank]

child.blank = newblank

child.h = s.h + MDInc[s.tiles[newblank]][newblank][s.blank]

return child

→ Solves all instances in 5 476 seconds (previously 9 298 seconds)



Motivation and Background IDA∗ A∗ Conclusion

2. Improvement: Operator Pre-computation

Expand (State s):

vector childs // creates an empty vector

if s.blank >= Width then

childs.push(Child(s, s.blank - Width))

if s.blank % Width > 0 then

childs.push(Child(s, s.blank - 1))

if s.blank % Width < Width - 1 then

childs.push(Child(s, s.blank + 1))

if s.blank < NTiles - Width then

childs.push(Child(s, s.blank + Width))

return childs

Idea: Avoid evaluations in if statements by precomputing possible
movements



Motivation and Background IDA∗ A∗ Conclusion

2. Improvement: Operator Pre-computation

Pre-compute applicable ops[blank pos]

→ array of possible next blank positions

Expand (State s):

vector childs

for newblank in applicable_ops[s.blank] do

childs.push(Child(s, newblank))

return childs

→ Solves all instances in 5 394 seconds (previously 5 476 seconds)



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification

Child (State s, int newblank):

State child = new State

Copy s.tiles to child.tiles

...

return child

Problem: Copying takes lots of time (and also memory)
Idea: Modify state and revert it when backtracking



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification (Conceputally)

LimitedDFS(state, g, f-limit):

...

for each child in Expand(state) do

rec-limit = LimitedDFS(child, g + 1, f-limit)

Release(child)

...

LimitedDFS(state, g, f-limit):

...

for i = 0 to NumOfApplicableOps(state) do

undoinfo = ApplyNthOp(state, i)

rec-limit = LimitedDFS(state, g + 1, f-limit)

Undo(state, undoinfo)

...



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification (Conceputally)

LimitedDFS(state, g, f-limit):

...

for each child in Expand(state) do

rec-limit = LimitedDFS(child, g + 1, f-limit)

Release(child)

...

LimitedDFS(state, g, f-limit):

...

for i = 0 to NumOfApplicableOps(state) do

undoinfo = ApplyNthOp(state, i)

rec-limit = LimitedDFS(state, g + 1, f-limit)

Undo(state, undoinfo)

...



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification (15-puzzle)

ApplyNthOp(state, n):

u = new UndoInfo()

u.h = state.h

u.blank = s.blank

newblank = applicable_ops[s.blank][n]

tile = state.tiles[newblank]

state.h += MDInc[tile][newblank][state.blank]

state.tiles[state.blank] = tile

state.blank = newblank

return u

Undo(state, undoinfo):

state.tiles[s.blank] = state.tiles[undoinfo.blank]

state.h = undoinfo.h

state.blank = undoinfo.blank

delete undoinfo



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification (15-puzzle)

ApplyNthOp(state, n):

u = new UndoInfo()

u.h = state.h

u.blank = s.blank

newblank = applicable_ops[s.blank][n]

tile = state.tiles[newblank]

state.h += MDInc[tile][newblank][state.blank]

state.tiles[state.blank] = tile

state.blank = newblank

return u

Undo(state, undoinfo):

state.tiles[s.blank] = state.tiles[undoinfo.blank]

state.h = undoinfo.h

state.blank = undoinfo.blank

delete undoinfo



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: In-place Modification

→ Solves all instances in 2 179 seconds (previously 5 394 seconds)



Motivation and Background IDA∗ A∗ Conclusion

4. Improvement: C++ Templates

Main problem: Virtual methods cannot be inlined

Solution: Use templates

Additional advantage: no opaque pointers

Resulting machine code same as from pure sliding-tiles solver
implementation

→ Solves all instances in 634 seconds (previously 2 179 seconds)



Motivation and Background IDA∗ A∗ Conclusion

IDA∗ Summary

Base implementation 9,298 – 1,982,479
Incremental heuristic 5,476 1.7 3,365,735
Operator pre-computation 5,394 1.7 3,417,218
In-place modification 2,179 2.3 8,457,031
C++ template 634 14.7 29,074,838

Korf’s solver 666 14.0 27,637,121



Motivation and Background IDA∗ A∗ Conclusion

A∗



Motivation and Background IDA∗ A∗ Conclusion

Base Implementation

Standard A∗ implementation

Open list: binary min-heap ordered on f
(tie-breaking prefers high g)

Allows duplicate states in open list

Closed list: hash table using chaining to resolve collissions

Positions and tiles in State no longer integers but bytes

→ can solve only 97 of the 100 instances
→ solving these 97 requires 1 695 seconds



Motivation and Background IDA∗ A∗ Conclusion

1. Improvement: Detecting Duplicates on Open

When pushing a new node to open:

Is there already a node with the same state in Open?

If not, add the new node

If yes and the new node has a lower g -value
→ update the node in Open

g -value
parent pointer
position in Open (according to new f -value)

Solving time for the 97 instances increases from 1 695 seconds to
1 968 seconds



Motivation and Background IDA∗ A∗ Conclusion

2. Improvement: C++ Templates

Changes analogous to IDA∗ case

With IDA∗ no need for memory allocation during search

A∗ must still allocate search nodes

Solving time for the 97 instances drops from 1 695 seconds to
1 273 seconds and two more instances solved.



Motivation and Background IDA∗ A∗ Conclusion

3. Improvement: Pool Allocation

Memory consumption of A∗grows during execution.

Heap memory allocation takes time

Idea: Do not allocate memory for one node after the other but
for 1024 blocks at a time

Positive side effect: increased cache locality

→ Solving time for the 97 instances drops to 1 184 seconds
→ Solves all instances within 2,375 seconds



Motivation and Background IDA∗ A∗ Conclusion

4. Improvement: Packed State Representation

Most time spent on open and closed list operations

Closed list operation: hashing 16-entry array and possibly
performing equality tests on it

Improvement: Pack tiles into 8 bytes (1 word on many
machines)

Benefits

Less memory consumption

Hash function is simple return

Equality test is comparison of two numbers

→ Solves all instances within 1,896 seconds (before: 2,375 seconds)



Motivation and Background IDA∗ A∗ Conclusion

5. Improvement: Intrusive Data Structures

Hash table resolves collisions by chaining

Need in addition to the entry two pointers to previsous and
next element

Hash table contains a record for each element that adds these
pointers.

Idea: Avoid creating the records by allowing the hash table to
add the pointers directly to the nodes (super-hackish)

Also reduces memory requirement

→ Solves all instances within 1,269 seconds (before: 1,896 seconds)



Motivation and Background IDA∗ A∗ Conclusion

6. Improvement: Array-based Priority Queues

Min-heap open list: O(log2 n) complexity for insert, remove
and update

Idea: Use array-based implementation instead

Array holds at position i a list of all nodes with f -value i .

Constant-time (amortized) inserting, removal and updating

→ Solves all instances within 727 seconds (before: 1,269 seconds)



Motivation and Background IDA∗ A∗ Conclusion

6. Improvement: Array-based Priority Queues (nested)

Disadvantage of array-based priority queue: no g -value
tie-breaking

Solution: Nested open-list

Bucket for f -value contains array-based priority queue sorted
by g -value

→ Solves all instances within 516 seconds (before: 727 seconds)



Motivation and Background IDA∗ A∗ Conclusion

A∗: Summary

97 initially solved instances

secs imp GB imp

Base implementation 1,695 – 28 –
Incr. MD and op. table 1,513 1.1 28 1.0
Avoid duplicates in open 1,968 0.9 28 1.0
C++ templates 1,273 1.3 23 1.2
Pool allocation 1,184 1.4 20 1.4
Packed states 1,051 1.6 18 1.6
Intrusive data structures 709 2.4 15 1.9
1-level bucket open list 450 3.8 21 1.3
Nested bucket open list 290 5.8 11 2.5



Motivation and Background IDA∗ A∗ Conclusion

A∗: Summary (all instances)

A∗

secs GB nodes/sec

Pool allocation 2,275 45 656,954
Packed states 1,896 38 822,907
Intrusive data structures 1,269 29 1,229,574
1-level bucket open list 727 36 3,293,048
nested bucket open list 516 27 3,016,135

IDA∗

secs imp nodes/sec

Base implementation 9,298 – 1,982,479
Incremental heuristic 5,476 1.7 3,365,735
Operator pre-computation 5,394 1.7 3,417,218
In-place modification 2,179 2.3 8,457,031
C++ template 634 14.7 29,074,838

Korf’s solver 666 14.0 27,637,121



Motivation and Background IDA∗ A∗ Conclusion

Conclusion



Motivation and Background IDA∗ A∗ Conclusion

Conclusion

Empirical comparison of algorithms has only limited
informative value

Importance of efficient implementation

How helpful is this study?

only 15-puzzle (unit-cost invertible actions, cheap node
expansion, few duplicates, . . . )
cheap, rather uninformative heuristic
Which/how can improvements be generalized to other
domains? Do findings still hold there?



Motivation and Background IDA∗ A∗ Conclusion

Questions?

Questions?


