Implementing Fast Heuristic Search Code

E. Burns, M. Hatem, M. J. Leighton, W. Ruml
(presentation by G. Roger)

Universitat Basel

October 17, 2013

Motivation and Background

Motivation and Background
®00

Motivation

@ Theoretical comparison of different search methods often
hard /impossible

@ Very often: Empirical comparison by means of experiments
@ Performance depends on implementation

@ Usually no implementation details in publications

Motivation and Background
oeo

Aim of the paper

Example:
A" and IDA* in C++
with Manhattan distance heuristic on 15-puzzle

@ Demonstrate influence of implementation

@ Reveal “tricks” of state-of-the-art implementations and
measure their influence

@ Focus on solving time

Motivation and Background
ooe

Reminder: Manhattan Distance Heuristic

9 2 12 6 1 2 3 4

3 . 1 11 9 10 || 11 || 12
15 4 10 8 13 || 14 || 15 .

Manhattan distance MD;(s):

Distance from position of tile t in s to goal position of t
Example: MDy(s) = 4

Manhattan distance heuristic iMP(s) = S 1. , MDy(s)

IDA”

Base Implementation

Domain-independent IDA* implementation
o Virtual methods Initial, h, IsGoal, Expand, Release

@ Opaque states

IDAStar(initial configuration):
state = Initial(initial configuration)
f-1limit = 0
while f-limit != infinity:
f-limit = LimitedDFS(state, 0, f-limit)
return unsolvable

Base Implementation

LimitedDFS(state, g, f-limit):
if g + h(state) > f-1limit then
return g + state.h
if IsGoal(state) then
extract solution and stop search
next-limit = infinity
for each child in Expand(state) do
rec-limit = LimitedDFS(child, g + 1, f-limit)
Release(child)
next-limit = min(next-limit, rec-limit)
return next-limit

Base Implementation

Sliding tile puzzle
@ State consists of

e field blank for blank position
o field h for heuristic estimate
e array tiles with 16 integers maps positions to tiles

@ h, IsGoal and Release simple one-liners
o Initial creates initial state as specified in input

@ Dynamics of domain in method Expand

IDA™
000000

Base Implementation: Expand

Expand (State s):

vector childs // creates an empty vector

if s.blank >= Width then
childs.push(Child(s, s.blank - Width))

if s.blank % Width > O then
childs.push(Child(s, s.blank - 1))

if s.blank % Width < Width - 1 then
childs.push(Child(s, s.blank + 1))

if s.blank < NTiles - Width then
childs.push(Child(s, s.blank + Width))

return childs

IDA™
0000®0

Base Implementation: Child

Child (State s, int newblank):
State child = new State
Copy s.tiles to child.tiles
child.tiles[s.blank] = s.tiles[newblank]
child.blank = newblank
child.h = Manhattan_dist(child.tiles, child.blank)
return child

IDA*
00000e

Base Implementation: Performance

Solves all 100 benchmark tasks in 9298 seconds.

IDA™
®0

1. Improvement: Incremental Manhattan Distance

o State s with tile t* at position from_pos
@ Successor state s’ with tile t* at position to_pos
@ Only MD of tile t* changes

AMP (s Z MD,(s

Tiles t

= hMP(s) — MDy«(s) + MDy(s")

o Idea: Precompute MD difference of tile t* when moving it
from from_pos to to_pos

@ Lookup table MDInc[tile] [from pos] [to_pos]

IDA™
oce

1. Improvement: Incremental Manhattan Distance

Child (State s, int newblank):
State child = new State
Copy s.tiles to child.tiles
child.tiles[s.blank] = s.tiles[newblank]
child.blank = newblank
child.h = Manhattan_dist(child.tiles, child.blank)
return child

— Solves all instances in 5476 seconds (previously 9298 seconds)

IDA™
oce

1. Improvement: Incremental Manhattan Distance

Child (State s, int newblank):
State child = new State
Copy s.tiles to child.tiles
child.tiles[s.blank] = s.tiles[newblank]
child.blank = newblank
child.h = s.h + MDInc[s.tiles[newblank]] [newblank] [s.blank]
return child

— Solves all instances in 5476 seconds (previously 9298 seconds)

IDA™
°0

2. Improvement: Operator Pre-computation

Expand (State s):

vector childs // creates an empty vector

if s.blank >= Width then
childs.push(Child(s, s.blank - Width))

if s.blank % Width > O then
childs.push(Child(s, s.blank - 1))

if s.blank J Width < Width - 1 then
childs.push(Child(s, s.blank + 1))

if s.blank < NTiles - Width then
childs.push(Child(s, s.blank + Width))

return childs

Idea: Avoid evaluations in if statements by precomputing possible
movements

IDA™
oce

2. Improvement: Operator Pre-computation

Pre-compute applicable ops[blank pos]
— array of possible next blank positions

Expand (State s):
vector childs
for newblank in applicable_ops[s.blank] do
childs.push(Child(s, newblank))
return childs

— Solves all instances in 5394 seconds (previously 5476 seconds)

IDA™
®000

3. Improvement: In-place Modification

Child (State s, int newblank):
State child = new State
Copy s.tiles to child.tiles

return child

Problem: Copying takes lots of time (and also memory)
Idea: Modify state and revert it when backtracking

IDA*
0®00

3. Improvement: In-place Modification (Conceputally)

LimitedDFS(state, g, f-limit):

for each child in Expand(state) do
rec-limit = LimitedDFS(child, g + 1, f-limit)
Release(child)

IDA™
0®00

3. Improvement: In-place Modification (Conceputally)

LimitedDFS(state, g, f-limit):

for each child in Expand(state) do
rec-limit = LimitedDFS(child, g + 1, f-limit)
Release(child)

LimitedDFS(state, g, f-limit):

for i = 0 to NumOfApplicableOps(state) do
undoinfo = ApplyNthOp(state, i)
rec-limit = LimitedDFS(state, g + 1, f-limit)
Undo(state, undoinfo)

IDA™
coe0

3. Improvement: In-place Modification (15-puzzle)

ApplyNthOp(state, n):
u = new UndoInfo()
u.h = state.h
u.blank = s.blank
newblank = applicable_ops[s.blank] [n]
tile = state.tiles[newblank]
state.h += MDInc[tile] [newblank] [state.blank]
state.tiles[state.blank] = tile
state.blank = newblank
return u

IDA™
coe0

3. Improvement: In-place Modification (15-puzzle)

ApplyNthOp(state, n):
u = new UndoInfo()
u.h = state.h
u.blank = s.blank
newblank = applicable_ops[s.blank] [n]
tile = state.tiles[newblank]
state.h += MDInc[tile] [newblank] [state.blank]
state.tiles[state.blank] = tile
state.blank = newblank
return u

Undo(state, undoinfo):
state.tiles[s.blank] = state.tiles[undoinfo.blank]
state.h = undoinfo.h
state.blank = undoinfo.blank
delete undoinfo

IDA*
ocooe

3. Improvement: In-place Modification

— Solves all instances in 2179 seconds (previously 5394 seconds)

IDA™

4. Improvement: C++ Templates

@ Main problem: Virtual methods cannot be inlined
@ Solution: Use templates
o Additional advantage: no opaque pointers

@ Resulting machine code same as from pure sliding-tiles solver
implementation

— Solves all instances in 634 seconds (previously 2179 seconds)

IDA* Summary

Base implementation 9,298 - 1,982,479
Incremental heuristic 5476 1.7 3,365,735
Operator pre-computation 5,394 1.7 3,417,218
In-place modification 2,179 23 8,457,031
C++ template 634 14.7 29,074,838
Korf's solver 666 14.0 27,637,121

A*

A*
9000000000

Base Implementation

Standard A* implementation

@ Open list: binary min-heap ordered on f
(tie-breaking prefers high g)

@ Allows duplicate states in open list
@ Closed list: hash table using chaining to resolve collissions

@ Positions and tiles in State no longer integers but bytes

— can solve only 97 of the 100 instances
— solving these 97 requires 1695 seconds

A*
0®@00000000

1. Improvement: Detecting Duplicates on Open

When pushing a new node to open:
@ Is there already a node with the same state in Open?
o If not, add the new node

o If yes and the new node has a lower g-value
— update the node in Open
o g-value
e parent pointer
e position in Open (according to new f-value)

Solving time for the 97 instances increases from 1695 seconds to
1968 seconds

A*
00®@0000000

2. Improvement: C4++ Templates

e Changes analogous to IDA* case
o With IDA* no need for memory allocation during search

o A* must still allocate search nodes

Solving time for the 97 instances drops from 1695 seconds to
1273 seconds and two more instances solved.

A*
000e@000000

3. Improvement: Pool Allocation

@ Memory consumption of A*grows during execution.
@ Heap memory allocation takes time

@ Idea: Do not allocate memory for one node after the other but
for 1024 blocks at a time

o Positive side effect: increased cache locality

— Solving time for the 97 instances drops to 1184 seconds
— Solves all instances within 2,375 seconds

A*
000000000

4. Improvement: Packed State Representation

@ Most time spent on open and closed list operations

@ Closed list operation: hashing 16-entry array and possibly
performing equality tests on it

@ Improvement: Pack tiles into 8 bytes (1 word on many
machines)
Benefits
@ Less memory consumption
@ Hash function is simple return

o Equality test is comparison of two numbers

— Solves all instances within 1,896 seconds (before: 2,375 seconds)

A*
00000@0000

5. Improvement: Intrusive Data Structures

@ Hash table resolves collisions by chaining

@ Need in addition to the entry two pointers to previsous and
next element

@ Hash table contains a record for each element that adds these
pointers.

o ldea: Avoid creating the records by allowing the hash table to
add the pointers directly to the nodes (super-hackish)

@ Also reduces memory requirement

— Solves all instances within 1,269 seconds (before: 1,896 seconds)

A*
0000008000

6. Improvement: Array-based Priority Queues

@ Min-heap open list: O(log, n) complexity for insert, remove
and update

o Idea: Use array-based implementation instead
@ Array holds at position i a list of all nodes with f-value i.

e Constant-time (amortized) inserting, removal and updating

— Solves all instances within 727 seconds (before: 1,269 seconds)

A*
0000000e00

6. Improvement: Array-based Priority Queues (nested)

e Disadvantage of array-based priority queue: no g-value
tie-breaking

@ Solution: Nested open-list

@ Bucket for f-value contains array-based priority queue sorted
by g-value

— Solves all instances within 516 seconds (before: 727 seconds)

A*
0000000080

A*: Summary

97 initially solved instances

secs imp | GB imp
Base implementation 1,695 - 28 -
Incr. MD and op. table 1,513 1.1 | 28 1.0
Avoid duplicates in open 1,968 0.9 | 28 1.0

C++ templates 1273 13| 23 12
Pool allocation 1,184 14| 20 14
Packed states 1,061 16| 18 1.6

Intrusive data structures 709 24| 15 19
1-level bucket open list 450 38| 21 13
Nested bucket open list 2900 58| 11 25

A*
000000000 e

A*: Summary (all instances)

A*
secs GB nodes/sec
Pool allocation 2,275 45 656,954
Packed states 1,806 38 822,907

Intrusive data structures 1,269 29 1,229,574
1-level bucket open list 727 36 3,293,048
nested bucket open list 516 27 3,016,135

IDA*
secs imp nodes/sec
Base implementation 9,298 - 1,982,479
Incremental heuristic 5,476 1.7 3,365,735
Operator pre-computation 5,394 1.7 3,417,218
In-place modification 2,179 23 8,457,031
C++ template 634 14.7 29,074,838

Korf's solver 666 14.0 27,637,121

Conclusion

Conclusion

Conclusion

@ Empirical comparison of algorithms has only limited
informative value
@ Importance of efficient implementation
@ How helpful is this study?
o only 15-puzzle (unit-cost invertible actions, cheap node
expansion, few duplicates, ...)
e cheap, rather uninformative heuristic

o Which/how can improvements be generalized to other
domains? Do findings still hold there?

Questions?

Questions?

