Seminar: Search and Optimization
4. Basic Search Algorithms

Martin Wehrle

Universitat Basel

October 4, 2012



Basics



Basics
0@0000

State Spaces

Definition (State Space)

A state space (or transition system) is a 6-tuple
S = (S, A, cost, T, sy, S,) where

S finite set of states
A finite set of actions
cost : A — R{ action costs

T C S x A x S transition relation;
deterministic in (s, a)

sp € S initial state

S, C S set of goal states




Basics
[e]e] Yolole}

Representation of State Spaces

How to get the state space into the computer?

State space S = (S, A, cost, T, sg, Si) as black box:

@ init(): creates initial state
Returns: the state sy
@ is-goal(s): tests if state s is goal state
Returns: true if s € S;; false otherwise
@ succ(s): lists all applicable actions and successors of s
Returns: List of tuples (a,s’) with s = s
@ cost(a): determines action cost of action a
Returns: the non-negative number cost(a)




Basics
[e]eleY Tole}

Search Algorithms

Start with initial state. In every step, expand a state through
generating its successors.

~~ search space



Basics
0000e0

Terminology

@ Search node
Represents a state + additional information during the search

@ Node expansion
Generating the successor nodes of a node n through applying
the applicable actions in n
@ Open list or Frontier
Set of nodes that are candidates for expansion
@ Closed list
Set of nodes that are already expanded

@ Search strategy
Determines which node to expand next



Basics
00000e

Properties of Search Algorithms

Completeness: Guarantee to find a solution is a solution exists.
Guarantee to terminate if no solution exists.

Optimality: Guarantee to find optimal solutions

Complexity: Time: How long does it take to find a solution?
(measured in generated nodes)
Space: How much memory is used?
(measured in nodes)

Parameters:

@ b: branching factor (= max. number of successors of a state)

@ d: search depth (length of longest path in search space)



Blind Search Algorithms

9000000000

Blind Search Algorithms



Blind Search Algorithms
0®00000000

Blind Search Algorithms

Blind (or Uninformed) Search Algorithms

Use no additional information about the state space
beyond the problem definition

@ Breadth-first search
@ Depth-first search

e Uniform cost search, iterative depth-first search, ... (not
considered in this talk)

In contrast to
heuristic search algorithms (~ introduced later)



Blind Search Algorithms
00®0000000

Breadth-First Search

Nodes are expanded in the order they have been generated (FIFO)
~~ open list implemented as, e.g., a double-ended queue (deque)

>®



Blind Search Algorithms
00®0000000

Breadth-First Search

Nodes are expanded in the order they have been generated (FIFO)
~~ open list implemented as, e.g., a double-ended queue (deque)

>®



Blind Search Algorithms
00®0000000

Breadth-First Search

Nodes are expanded in the order they have been generated (FIFO)
~~ open list implemented as, e.g., a double-ended queue (deque)

>®

@ ®



Blind Search Algorithms
00®0000000

Breadth-First Search

Nodes are expanded in the order they have been generated (FIFO)
~~ open list implemented as, e.g., a double-ended queue (deque)

>®

@ ® pO ® G ©



Blind Search Algorithms
00®0000000

Breadth-First Search

Nodes are expanded in the order they have been generated (FIFO)
~~ open list implemented as, e.g., a double-ended queue (deque)

>®

@ ® pO ® G ©

@ searches the state space layer by layer
@ complete
@ always finds a shallowest goal state first

@ optimal in case all actions have the same costs



Blind Search Algorithms S Summar
000®000000 ) oo

Breadth-First Search: Pseudo-Code

BFS: Pseudo-Code (inefficient!)

no := make-root-node(init())
if is-goal(ng.state):
return extract-solution(np)
open := new FIFO queue with ngy as the only element
closed := ()

loop do
if open.empty():
return none
n = open.pop-front()
closed.insert(n)
for each (a,s’) € succ(n.state):
if s’ ¢ open U closed.
n’ := make-node(n, a, s")
if is-goal(s’):
return extract-solution(n’)
open.push-back(n’)




Blind Search Algorithms
0000®00000

Breadth-First Search: Complexity

Proposition: Time Complexity

Let b be the branching factor and d the minimal solution length in
the generated state space. Let b > 2.

Then the time complexity of breadth-first search is

1+ b+ b2+ +---+ b9 =0(b%)

o’

Recall: we measure time complexity as number of generated nodes

It follows that (for b > 2) also the space complexity of
breadth-first search is O(b?).



Blind Search Algorithms
00000®0000

Depth-First Search

Nodes that are generated last are expanded first (LIFO)
~ nodes with highest depth are expanded first

@ Open list implemented as a stack

Example: (Assumption: nodes in depth 3 have no successors)

© o



Blind Search Algorithms
00000e0000

Depth-First Search

Nodes that are generated last are expanded first (LIFO)
~ nodes with highest depth are expanded first

@ Open list implemented as a stack

Example: (Assumption: nodes in depth 3 have no successors)

T



Blind Search Algorithms
00000e0000

Depth-First Search

Nodes that are generated last are expanded first (LIFO)
~ nodes with highest depth are expanded first

@ Open list implemented as a stack
Example: (Assumption: nodes in depth 3 have no successors)

*®

Py
o

L
St



Blind Search Algorithms
00000e0000

Depth-First Search

Nodes that are generated last are expanded first (LIFO)
~ nodes with highest depth are expanded first

@ Open list implemented as a stack

Example: (Assumption: nodes in depth 3 have no successors)

DE D
293004 9
DD



Blind Search Algorithms
000000e000

Depth-First Search: Properties and Implementation

Properties:
@ neither complete nor optimal (Why?)

@ complete if the state space is acyclic

Implementation:
@ common and efficient: depth-first search as recursive function

~~ use stack of programming language/CPU as open list



Blind Search Algorithms s h Summar
0000000e00 0o

Depth-First Search: Pseudo-Code

Pseudo-Code: Main Procedure

no := make-root-node(init())
solution := recursive-search(ng)
if solution # none:

return solution
return unsolvable

N

function recursive-search(n):

if is-goal(n.state):
return extract-solution(n)
for each (a,s’) € succ(n.state):
n' := make-node(n, a, s’)
solution := recursive-search(n’)
if solution # none:
return solution
return none

N,




Blind Search Algorithms
0000000080

Depth-First Search: Complexity

Time Complexity:
o If there exist paths of length m in the state space, then
depth-first search can generate O(b") nodes.

@ However, in the best case, a solution of length / can be found
by generating only O(b/) nodes.



Blind Search Algorithms
©000000000e

Depth-First Search: Complexity

Space Complexity:

@ Only maintains nodes in memory along the path from initial
node to currently expanded node (no duplicate elimination!)
(“along the path” = nodes on this path and their successors)

@ Therefore, if m is the maximal depth of the search, the space
complexity is O(bm)



Blind Search Algorithms
©000000000e

Depth-First Search: Complexity

Space Complexity:

@ Only maintains nodes in memory along the path from initial
node to currently expanded node (no duplicate elimination!)
(“along the path” = nodes on this path and their successors)

@ Therefore, if m is the maximal depth of the search, the space
complexity is O(bm)

@ Low space complexity ~» depth-first search is interesting
despite its disadvantages



Best-First Search



Best-First Search
0®0000000000000

Heuristic Search Algorithms

@ So far: blind search algorithms (no additional properties of the
problem are used to guide the search)

@ Drawback: Limited scalability (even for small problems)
@ |dea: find criteria to estimate which states are “good” and
which states are “bad” ~- prefer good states

~> heuristic search algorithms



Best-First Search
00®000000000000

Heuristics

Definition (Heuristic)

Let S be a state space with set of states S.
A heuristic function or heuristic for S is a function

h:S—)NoU{OO},

that maps states to natural numbers (or o).

Idea: h(s) estimates distance of s to goal

@ Intuition: the better h approximates the real goal distance, the
more efficient the search

Notation: we write h(n) as an abbreviation for h(n.state)



Best-First Search
000@00000000000

Example: Route Planning in Romania

Example heuristic: straight-line distance to Bucharest

Arad
[]Oradea Bucharest
Craiova
Drobeta
Eforie
_A Fagaras
Arad} Giurgiu
Hirsova
lasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
X Rimnicu Vilcea
[JHirsova Sibiu
86 Timisoara
Urziceni
Dobreta ] Vaslui
Eforie Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374



Best-First Search
0000®0000000000

Best-First Search

Best-first search represents a class of heuristic search algorithms
that expand in every step the “best” candidate node.

Best-First Search
Algorithms based on best-first search

@ use a heuristic to compute an evaluation function f
@ evaluate every node n with f (i.e., compute f(n))

@ expand node with minimal f value next

o different definitions of f
~~ different search algorithms



Best-First Search Summar
00000@000000000

Best-First Search: Pseudo-Code

Best-First Search (delayed duplicate elimination, no re-opening)

open := new priority queue, ordered by f
open.insert(make-root-node(init()))
closed := )
while not open.empty():
n = open.pop-min()
if n.state ¢ closed:
closed := closed U {n.state}
if is-goal(n.state):
return extract-solution(n)
for each (a, s’) € succ(n.state):
if h(s’) < oo:
n’ := make-node(n, a, s’)
open.insert(n’)
return unsolvable )




Best-First Search
000000e00000000

Important Best-Search Algorithms

Important Best-First Search Algorithms

@ Greedy best-first search

e f(n) := h(n)

o Quality of node is determined solely by the heuristic
o A*

o f(n) :=g(n)+ h(n)
o Combination of path costs g(n) (from init to n) and heuristic

y

~ In the following: discussion of greedy best-first search and A*



Best-First Search
0000000e0000000

Greedy Best-First Search

Greedy Best-First Search

Only take heuristic into account: f(n) := h(n)




Best-First Search
00000000e000000

Example: Greedy Best-First Search for Route Planning

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

_/ Fagaras 176
AradQ)) Giurgiu 7
Sibiu 9 Fagaras 92 Hir.sova 151

118 lasi 226
Lugoj 244

Mehadia 241

Neamt 234

Oradea 380

Pitesti 100

] Rimnicu Vilcea 193

[JHirsova Sibiu 253

86 Timisoara 329

Urziceni 80

Dobreta ] Vaslui 199

Eforie Zerind 374



Best-First Search
000000000e00000

Example: Greedy Best-First Search for Route Planning

(a) Theinitial state



Best-First Search
000000000e00000

Example: Greedy Best-First Search for Route Planning

(a) Theinitial state

(b) After expanding Arad Arad
SETD o>

253 329 374



Best-First Search
000000000e00000

Example: Greedy Best-First Search for Route Planning

(&) Theinitial state
366
(b) After expanding Arad Arad
> Shiu > Czeind>
253 329 374

(c) After expanding Sibiu




Best-First Search
000000000e00000

Example: Greedy Best-First Search for Route Planning

(&) Theinitial state
366
(b) After expanding Arad Arad
> Shiu > Czeind>
253 329 374

(c) After expanding Sibiu




Best-First Search

0000000000 e0000

Greedy Best-First Search: Properties

Greedy Best-First Search is

e complete for heuristics h with the property that h(s) = oo
implies that no solution starts in s (safe heuristics)

@ suboptimal (solution can be arbitrarily bad)

@ often one of the best search algorithms in practice
if optimality isn't a requirement




Best-First Search
00000000000e000

In addition to greedy best-first search, take the path costs into
account: f(n) = g(n) + h(n)

@ Balance path costs and estimated proximity to goal

@ f(n) estimates costs of cheapest solution from initial state
through n to the goal



Best-First Search
000000000000e00

Example: A* for Route Planning

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

_/ Fagaras 176
AradQ)) Giurgiu 7
Fagaras Hir.sova 151

118 lasi 226
Lugoj 244

Mehadia 241

Neamt 234

Oradea 380

Pitesti 100

] Rimnicu Vilcea 193

[JHirsova Sibiu 253

86 Timisoara 329

Urziceni 80

Dobreta ] Vaslui 199

Eforie Zerind 374



Best-First Search
0000000000000e0

Example: A* for Route Planning

(a) Theinitial state

366=0+366



Best-First Search
0000000000000e0

Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad CArad >
>CSibiu >

393=140+253 447=118+329 449=75+374



Best-First Search
0000000000000e0

Example: A* for Route Planning

(a) Theinitial state
366=0+366
(b) After expanding Arad CArad >
> 3
393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=T5+374

646=280+366 415=239+176 671=291+380 413=220+193



Best-First Search
0000000000000e0

Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea CArad D>

449=T75+374

526=366+160 417=317+100 553=300+253



Best-First Search
0000000000000e0

Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374



Best-First Search
0000000000000e0

Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

447=118+329 449=T75+374

418=418+0 615=455+160 607=414+193



Best-First Search
00000000000000e

A*: Properties

@ Most important advantage of A* compared to greedy best-first
search: optimal under appropriate requirements to heuristic
(mainly: admissibility)

@ Important result!



Summary



Summary
oce

Summary

Blind Search Algorithms

@ No additional problem properties used to guide the search

@ Often limited scalability even for small problems

@ Examples: breadth-first search and depth-first search

Heuristic Search Algorithms

@ Use heuristics to guide the search

@ Often much more efficient than blind search

o Examples: greedy best-first search and A*




	Basics
	Blind Search Algorithms
	Best-First Search
	Summary

