Seminar: Search and Optimization

2. Search Problems

Florian Pommerening

Universitat Basel

September 20, 2012

Classical Search Problems

@000

Classical Search Problems

Classical Search Problems
0e00

Informal Description

(Classical) search problems are one of the “easiest’
and most important classes of Al problems.

Task of an agent:
@ starting from an initial state
@ apply actions

@ to reach a goal state

Measure of performance: Minimize cost of actions

Classical Search Problems
fete] Yo}

Motivating Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 1 11) 9 10 | 11 | 12
15 4 10 8 13 | 14 | 15 .

More examples later on

Classical Search Problems
ocooe

Classical Assumptions

“Classical” assumptions:
@ only one agent in the environment (single agent)
@ always knows the complete world state (full observability)
@ only the agent can change the state (static)
o finite amount of possible states/actions (discrete)
@ actions change the state deterministically

~> each assumption can be generalized
(not the focus of this seminar)

We omit “classical” in the following.

Formalization

Formalization
0®000

State Spaces

To talk about algorithms for search problems we need a formal
definition.

Definition (State Space)

A state space (or transition system) is a 6-tuple
S = (S, A, cost, T, sy, S,) where

o S finite set of states

@ A finite set of actions

@ cost: A— Rsr action costs
°

T C S x A x S transition relation;
deterministic in (s, a) (see next slide)

Sp € S initial state

S, C S set of goal states

Formalization
00®00

State Spaces: Transitions, Determinism

Definition (Transition, deterministic)

Let S = (S, A, cost, T, sp, Si) be a state space.

The triples (s, a,s’) € T are called transitions.

We say S has the transition (s, a,s’) if (s,a,s’) € T and write
s % s (s — s, if we do not care about a).

Transitions are deterministic in (s,a): s = s; and s 2 s, with
s1 # Sp is not allowed.

Formalization
000®0

State Space: Example

State spaces are often visualized as directed graphs.

@ states: nodes

@ transitions: labeled edges
(here: colors instead of labels) goal states

@ initial state: node marked with arrow /\/

@ goal states: marked
(here: with ellipse)

@ actions: edge labels

D > A
@ action costs: given separately (or
implicit = 1)
@ paths to goal states correspond to M
E+w — F<+—
initial state

solutions

@ shortest paths correspond to
optimal solutions

Formalization
[eelelol]

State Spaces: Terminology

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)
Let S = (S, A, cost, T, sy, Si) be a state space.
Let s,s' € S be states with s — s’

@ s is a predecessor of s’

@ s’ is a successor of s

a . . . 5
If we have s = s/, action a is applicable in s.

Formalization
[eelelol]

State Spaces: Terminology

We use common terminology from graph theory.

Definition (path)
Let S = (S, A, cost, T, sy, Si) be a state space.

Let s, ... s(" € S be states and 71, ..., 7, € A actions,
with s(0 ™% s(l), c s(n=1) Iny o(n),
o m=(my,...,mp) is a path from s(® to s(")

@ length of the path: |7| = n
@ cost of the path: cost(mw) = >_7_; cost(m;)

Note:
@ paths with length 0 are allowed

@ sometimes the state sequence <s(°), ... ,s(")> or the sequence
<s(0),771, s ,s(”_l),wn,s(”)) are also called path

Formalization

O000e

State Spaces: Terminology

Additional terminology:

Definition (solution, optimal, solvable, reachable, dead end)

Let S = (S, A, cost, T, sy, Si) be a state space.

@ A path from a state s € S to a state s, € S,
is a solution for/of s.

@ A solution for sp is a solution for/of S.

e Optimal solutions (for s) have minimal cost
among all solutions (for s).

@ State space S is solvable if a solution for S exists.

@ State s is reachable if there is a path from sp to s.

@ State s is a dead end if no solution for s exists.

Representation of State Spaces

Representation
oce

Representation of State Spaces

How to get the state space into the computer?

© As an explicit graph:
Nodes (states) and edges (transitions) represented explicitly,
e.g. as adjacency lists or as adjacency matrix

e impossible for large problems (needs too much space)

o Dijkstra for small problems: O(|S|log|S| +|T|)

@ As a declarative description:

e compact description as input
~~ state space exponentially larger than input

e algorithms work directly on compact description
(e. g. reformulation, simplification of problem)

Representation
oce

Representation of State Spaces

How to get the state space into the computer?

@ As a black box: abstract interface for state spaces (used here)

abstract interface for state spaces

State space S = (S, A, cost, T, s, Si) as black box:

o init(): creates initial state
Returns: the state s

o is-goal(s): tests if state s is goal state
Returns: true if s € S, ; false otherwise

e succ(s): lists all applicable actions and successors of s
Returns: List of tuples (a,s’) with s 2 s

e cost(a): determines action cost of action a
Returns: the non-negative number cost(a)

Examples

Examples
oe

Examples for Search Problems

@ "“Toy problems”: combinatorial puzzles
(Rubik’s Cube, 15-puzzle, Towers of Hanoi, ...)

@ Scheduling, e. g. in factories
Query optimization in databases
NPCs in computer games

Code optimization in compilers

Sequence alignment in bio-informatics

°
°

°

@ Verification of soft- and hardware
°

@ Route planning (e.g. Google Maps)
°

Thousands of practical examples!

Examples
®000

Example 1: Blocks world

@ The Blocks world is a traditional example problem in Al.

Task: blocks world

@ Some colored blocks are on a table.

@ They can be stacked to towers but only one block
may be moved at a time.

@ Our task is to reach a given goal configuration.

Examples
0®00

Blocks World with Three Blocks

(action names not shown;
initial state and goal states can be chosen for each problem)

Examples
[e]elelo! Yolelel

Blocks World: Formal Definition

State space (S, A, cost, T, s, S&) blocks world with n Blocks

State space: blocks world

States S:
Partitioning of {1,2,..., n} into non-empty (ordered) sequences

Examples: {(1,2), (3)} ~ . {(1,2,3)} ~

Initial state sy and goal state S;:
different choices possible, e. g.:

® 5p = {<1a3>7 <2>}
° S = {{<3727 1>}}

Examples

[e]elelo! Yolelel

Blocks World: Formal Definition

State space (S, A, cost, T, s, S&) blocks world with n Blocks

State space: blocks world

Actions A:
o {movepp | b, b/ € {1,...,n} with b # b’}
e Move block b on top of block b’.
e Both have to be topmost block of a tower.
o {totabley, | b€ {1,...,n}}
o Move block b on the table (~ creates new tower).
e Has to be topmost block of a tower.

Action costs cost:
cost(a) = 1 for all actions a

Examples

[e]elelo! Yolelel

Blocks World: Formal Definition

State space (S, A, cost, T, s, S&) blocks world with n Blocks

State space: blocks world

Transitions:

Example for action a = moves 4:

Transition s = s exists if and only if
o s={(b1,...,bk,2),{c1,...,cm,4)} UX and
@ incase k >0: ' = {(b1,...,bk),{c1,...,cm4,2)} UX
@ incase k=0:s' ={(c1,...,cm,4,2)}UX

Examples
oooe

Blocks World: Properties

Blocks States Blocks States
1 1 10 58941091
2 3 11 824073141
3 13 12 12470162233
4 73 13 202976401213
5 501 14 3535017524403
6 4051 15 65573803186921
7 37633 16 1290434218669921
8 394353 17 26846616451246353
9 4596553 18 588633468315403843

@ For every given initial state and goal state with n blocks
simple algorithms can find solutions in O(n) time. (How?)
e Finding optimal solutions is NP-complete
(for a compact problem representation).

ical Search Problems

Example 2: Logistics

Task: logistics

@ Given: Cities with locations, objects to be delivered

@ Goal: Transport objects to destination locations

Actions: logistics

@ Objects can be loaded and unloaded to trucks and airplanes.

@ Trucks can drive between locations in a city.

@ Airplanes can fly between airports.

Complexity of Logistics

e Finding suboptimal solutions is polynomial.

@ Finding optimal solutions is NP-hard.

Examples
oce

Logistics: Example

Goal: Transport red package from location A to location D.
@ load package in blue truck, drive to B, unload package
@ load package in airplane, fly to C, unload package

© drive green truck to C, load package, drive to D, unload
package

Examples

Example 3: Depot

@ Warehouse logistics

e transport crates between depots and distributors
o limited number of pallets in each place

@ Within each warehouse

o like blocks world

e multiple forklifts possible
@ Between warehouses

e similar to logistics
e crates only transported with trucks

Depot: Example

Depot 1

Distributor 1

HooEng =

ical Search Problems

Depot: Properties

Task: Depot

Satisfy goal properties, given an initial configuration of places,
crates, and vehicles.

Different goals possible:

@ enable access to a crate
@ transport crates to Distributor

@ rearrange crates

@ combinations

Complexity of depot

@ Can include blocks world subtask.

@ ~~ Finding optimal solutions is also NP-hard

Examples

Example 4: Driverlog

@ Another package delivery problem

@ Path planning for drivers and G
trucks @
o Given
e map of streets (—) and
footpaths (- --) REE (A--{(D)
e initial locations of packages, [

trucks and drivers

ical Search Problems

Driverlog

Task: Driverlog

@ Deliver packages to goal locations.

@ Trucks and drivers can also have goal locations.

Actions: Driverlog

@ Drivers can walk on footpaths.

@ Drivers can board and leave trucks.
@ Trucks with a driver can drive on streets.

@ Packages can be loaded and unloaded into trucks.

Complexity of Driverlog

| A\

@ Finding suboptimal solutions is polynomial.
@ Finding optimal solutions is NP-hard.

Search Problems izatio sentation

Example 5: Scanalyzer

@ Business application
(LemnaTec)

o Logistics for smart
greenhouses

e automated
greenhouses with
integrated imaging
facilities

e plants on conveyor
belts

Image credit: LemnaTec

Examples

Scanalyzer

Difficulty

@ Confined space

@ Conveyor belts packed to capacity
@ Conveyor belts only move in one direction
o

Moving one plant moves others as well

Task: Scanalyzer

@ Given a layout of conveyor belts
@ Transport all plants through the imaging chamber

@ Return every plant to its original position

Examples

Scanalyzer: Actions

Actions: Scanalyzer

@ Depend on the layout

@ Rotate plant batches = — A <« q
on two conveyor belts l" E— ‘4
@ Rotate while routing i l“ - \4

through the imaging [1] \ \
chamber |] 1?" — D = "T
! b - B — I
Complexity of Scanalyzer L -l-l r— ‘_.,

@ Depends on the layout

@ Polynomial for simple,
symmetric layouts

arch Problems izatio epresentation

Example 6: Sokoban

& X
 Spl Gk matin_Lostocran_ 30

@ Single player game
@ Agent can push objects

@ Goal: All objects are at
destination locations

ongnal Raum 10 Zenem0 Dricken:0

Image credit: KDE (KSokoban)

Examples

Sokoban

More Detailed Problem Description

@ Given: Grid of locations, some locations contain objects
@ Agent can push objects to free and adjacent locations

e For example, to push an object to the right, the agent has to
be located left to the object.

@ Objects cannot be pulled

Complexity of Sokoban

@ PSPACE-complete

e Particularly: Many dead-end states (e. g., objects in corners)

Examples

Example 7: Woodworking

Scheduling problem

@ Use different tools to create parts with the correct
size (here: one dimensional)

color

material (pine, oak, mahogany, ...)

surface (smooth, rough, ...)

o treatment (varnished, glazed, untreated, ...)

Different tools can be used in parallel

@ Minimize time to finish all parts

Examples

Woodworking

Available Tools

@ Saws and high-speed saws

e cut boards to size

e dead ends possible by wrong cut

o high-speed saws cut faster but need set-up
time

@ Grinders and planers

e remove existing color and treatment
e grinder leaves smoother surface
e planer removes more material

@ Glazers, immersion varnishers and spray Image Credit: GoRapid

varnishers

e change color and treatment
@ color has to be available for this machine

Examples

Woodworking: Example

o Initial state (available
boards/tools)

10m oak (red, glazed, smooth)

6m pine (natural, rough)

8m pine (natural, smooth) 9 I I

one of each tool

@ Goal state (desired parts)

e 3x 3m oak (red)
e 6m pine (blue, smooth)

@ Solution (optimality depends on action durations)

use high-speed saw for red part

grind and spray varnish 6m board while sawing red part
What if no grinder is available?

What if only one saw is available?

@ Space application
@ Collect image data with a number
of satellites
o Can be turned to ground stations,
stars or phenomena
e Equipped with instruments, each
supporting certain modes
e Only power for one instrument at a time
o After switching them on, instruments must be calibrated on a
calibration target before taking images.

Image credit: eutelsat

@ Goal: Take images of stars or phenomena in certain modes
and have some satellites pointing to specified directions.

Examples

Satellite: Example

Examples

Satellite: Example

Goal images

@ star in red mode

@ planet in mode

Examples

Satellite: Example

Goal images

@ star in red mode

@ planet in mode

© Turn left satellite towards left ground station

@ Switch red-yellow instrument on

© Calibrate red-yellow instrument on ground station

@ Turn left satellite towards star

© Take image of star with calibrated instrument in red mode
O Turn left satellite towards planet

@ Take image of planet in yellow mode

Examples

Satellite: Properties

Image credit: DLR

Complexity of Satellite

@ We can find some plan in polynomial time.

e Finding an optimal plan is NP-hard.

Examples

Example 9: Rovers

@ Route planning and
task distribution

e Multiple rovers with
different capabilities

o Collect samples and

take pictures of
landmarks

@ Transmit pictures and
analysis results to
lander

Image credit: NASA

Examples

Rovers

Rover capabilities

@ Movement
o different road map for each rover

@ Rock/soil analysis tools

e optional
e limited storage capacity

o Cameras
e optional
o different modes (high res, color, ...)
e have to be calibrated first
o line of sight needed for calibration and taking pictures

@ Transmission
e only possible if lander is visible

Examples

Rovers

@ Given a set of rovers with their equipment and road maps

@ Collect all designated samples and pictures

@ Transmit results back to lander

Complexity of Rovers

e Finding suboptimal solutions is polynomial.

@ Finding optimal solutions is NP-hard.

Examples

Example 10: Elevators

@ transport passengers with lifts

@ two types of lifts

o different capacity

o different cost models (modelling the
energy consumption)

o different reachability of floors

e slow: capacity 2
moving costs 5 + #floors

e fast: capacity 3
moving costs 1 + 3#floors

ikl

@ (un-)boarding passengers is free

Examples

Elevators: Example

qd INNE

Goal:
Passenger on floor 6

Examples

Elevators: Example

4 Possible plan:

qd INNE

Goal:
Passenger on floor 6

Examples

Elevators: Example

4 Possible plan:

3 @ blue lift moves to ground floor [7]

Goal:
Passenger on floor 6

Examples

Elevators: Example

4 Possible plan:

3 @ blue lift moves to ground floor [7]

— @ passenger boards blue lift [0]

Goal:
Passenger on floor 6

Examples

Elevators: Example

6

5

4 Possible plan:

3] @ blue lift moves to ground floor [7]
- @ passenger boards blue lift [0]

2 - @ blue lift moves to floor 6 [19]

1

d |

Goal:

Passenger on floor 6

Examples

Elevators: Example

5

4 Possible plan (cost 26):

3] @ blue lift moves to ground floor [7]
— @ passenger boards blue lift [0]

2 — @ blue lift moves to floor 6 [19]

1 @ passenger leaves blue lift [0]

d

Goal:

Passenger on floor 6

Examples

Elevators: Example

Alternative plan:

qd INNE

Goal:
Passenger on floor 6

Examples

Elevators: Example

Alternative plan:

4 @ passenger boards red lift [0]

Goal:
Passenger on floor 6

Examples

Elevators: Example

Alternative plan:

4. @ passenger boards red lift [0]
3 o red lift moves to floor 4 [9]

1

G

Goal:
Passenger on floor 6

Examples

Elevators: Example

6
5
g— Alternative plan:
4l| @ passenger boards red lift [0]
3] e red lift moves to floor 4 [9]
— @ passenger leaves red lift [0]
2| |l
1
G
Goal:

Passenger on floor 6

Examples

Elevators: Example

6
> g— Alternative plan:
4. 1 @ passenger boards red lift [0]
3] o red lift moves to floor 4 [9]
- @ passenger leaves red lift [0]
2 - . @ passenger boards yellow lift [0]
1
G
Goal:

Passenger on floor 6

Examples

Elevators: Example

[e)}
| -]

g— Alternative plan:
4. @ passenger boards red lift [0]

3] o red lift moves to floor 4 [9]
- @ passenger leaves red lift [0]
2 - . @ passenger boards yellow lift [0]
1 @ yellow lift moves to floor 6 [7]
G
Goal:

Passenger on floor 6

Elevators: Example

2| | Il

1

G

Goal:
Passenger on floor 6

Alternative plan (cost 16):
@ passenger boards red lift [0]
red lift moves to floor 4 [9]
passenger leaves red lift [0]

°
o
@ passenger boards yellow lift [0]
o yellow lift moves to floor 6 [7]
o

passenger leaves yellow lift [0]

Examples

	Classical Search Problems
	Formalization
	Representation of State Spaces
	Examples
	Blocks world
	Logistics
	Depot
	Driverlog
	Scanalyzer
	Sokoban
	Woodworking
	Satellite
	Rovers
	Elevators

