Domain-Independent Construction of
Pattern Database Heuristics for
Cost-Optimal Planning

Patrik Haslum, Adi Botea, Malte Helmert,
Blai Bonet and Sven Koenig

(AAAI 2007)

Severin Gsponer



Problem of Pattern Databases

PDBs are a promising approach but:
* Difficult to select good patterns
* Memory and time limit the usable patterns

Target: Find good pattern collections completely
automatic



Background

Planning problem described in STRIPS
Multi-valued state variables

Abstraction of the problem
— Subset A of state variables
— Ignore variables not in A

— h#(s) heuristic value for state s

Constrained abstraction



Canonical Heuristic Function

Some definitions:
h is said to dominate another admissible heuristic h’
iff h(s) > h'(s),Vs
Given two PDB heuristics h* and h8 the heuristic function
h(s) = maz(h?(s), h"(s))

is admissible and dominates h* and h® alone.



Canonical Heuristic Function

If the set of action that affect some variable in A is disjoint from
the set of actions that affect any variable in B, then the additive

heuristic
h(s) = h™(s) + hP(s)

is also admissible. We say A and B are additive.

A set of patterns is additive iff all patterns in the set are pairwise
additive.

The additive heuristic dominates the maximum heuristic.



Canonical Heuristic Function

Definition:
Let C={P,,...,P,} be a collection of patterns, and let A be the collection of all
maximal (w.r.t. set inclusion) additive subsets of C:

The canonical heuristic function of Cis

hC = Mmax E hP
SecA
Pcs



Finding good Pattern Collections

Repeat

Expand Solve the
", . Evaluate the collection with :
Initial collection : problem with
neighbourhood the best . )
) this collection
neighbour




Finding good Pattern Collections

Initial collection

Evaluate the
neighbourhood

Repeat

Expand

collection with Sollve the )
the best problem wit
neighbour this collection

L

)




Initial pattern collection

* One pattern for each goal variable
* Each containing only this variable

Example blocks world:

Goal: A Collection C={P,, P,}
B P, ={loc,}
C P, ={loc,}

G = {loc,=B, locg=C}



Constructing the Neighbourhood

Given collection C={P,,..., P,} a new collection C’ can
be constructed by:

Add one variable V to a pattern P, and add this new
pattern to the collection.

C' = {P17°°°7Pk7Pk-|—1}
Pk_|_1 :PZU{V}

The neighbourhood of C contains all this new
collections.



Finding good Pattern Collections

Initial collection

Evaluate the
neighbourhood

Repeat

Expand

collection with Sollve the )
the best problem wit
neighbour this collection

L

)




Evaluating the Neighbourhood

Korf, Reid and Edelkamp (Artificial Intelligence 2001) develop a formula for
the number of nodes expanded by a tree search with cost bound c:

> Ne_nP(k)
k=0,...,c

where V;: number of nodes whose accumulated cost equals i
P(k): equilibrium dirstibution of the heuristic function h

It’s enough to know for a base heuristic h,, and two alternative improvements
h and h’, which improves more over h,,



Evaluating the Neighbourhood

In our case C and C’ only differs in one new pattern.

hY (s) > hC(s), Vs

So the search effort saved by using C’ instead of Cis:

If we draw a sample of m nodes at random from the search tree we get:

=YY N

i hC(n;)<k<hC' (n;)



Evaluating the Neighbourhood

Since N, tends to grow exponentially, we assume that N, dominates the other N, :

1
E Z Nc—hc(ni)

{nilh (ni)<h®’ (n:)}

Now we only have to determine if h¢(n,) > h(n)).

Additional simplifying approximation is to ignore the weight. So we only have to count
the number of nodes for which h¢(n,) > h(n)).



Important Improvements

Simplify the comparison of h¢ and h¢
Sampling the search space

Avoiding redundant evaluations
Ending the search



Finding good Pattern Collections

Repeat

Expand Solve the
", . Evaluate the collection with :
Initial collection : problem with
neighbourhood the best . )
) this collection
neighbour




Experiments

Sokoban:

40 Problems

28 solved

679'650 node expanded per instance

600.4 seconds average runtime

508.2 seconds spend in constructing the PDB (84.6%)

Regression search (using other heuristics):
Solve none of these 40 test problems.



Experiments

15-Puzzle:

100 Problems

93 solved

331’220 node expanded per instance

1’439.7 seconds average runtime

1’381.9 seconds spend in constructing the PDB (96%)

Regression search:

Over a set of 24 Problem
total number of expanded nodes: 2’559’508
with the method of the paper: 549’147
this is less than %



Experiments

15-Puzzle Mean value Counting approximation
Solved problems 66 80

Node expanded 657’380 418’730

Win ratio 1 7




Impact of Counting Approximation

1
E Z Nc—hc (n;)

{nilhc(ni)<hcl(ni)}

Node expanded

Estimated parameters

Counting approximation

Sokoban 551’290 679’650
15-Puzzle 655’530 483’490
Logistics 24’153 23’557




Questions?



