
1.6 Bit Pattern Databases

Presentation by Damian Murezzan

What is a pattern database?

pattern:

Projection of a state onto pattern space

pattern database:

hash
hash value

lookup

h=2 h=5 h=4 h=3

h=7 h=16 h=9 h=9

h=3 h=0 h=8 h=7

h=4 h=4

h=9 h=5

h=1 h=6

h=9 h=5

h=1 h=1

h=1 h=1

Compressed Pattern Databases

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. 2. 3. 1. 2. 3. 1. 2. 3. 1. 2. 3.

1. 2. 3.

h=1 h=1 h=4 h=1 h=6 h=4 h=1 h=9 h=7 h=1 h=5 h=5

h=1 h=1 h=4 h=1 h=6 h=4 h=1 h=9 h=7 h=1 h=5 h=5

How should we group the patterns?

h=1 h=1 h=4

How should we group the patterns?

Different methods, eg. cliques introduced by Felner et al. in 2007.

Cliques are a set of patterns reachable from each other by only one move, and
stores the minimum value of this set.

Introduces a error of at most one move.

One can also define cliques k moves apart. Then the maximum error is increased
to k.

A example for a clique: smallest disk pattern in the 4-peg Tower of Hanoi problem
form cliques of size 4. This results in a compression of factor 4.

Constructing Two-Bit Pattern Databases

Use mod three breath First Search in the pattern space with the goal pattern as
the root to construct a lossless compressed PDB which uses only two bits per
entry.

Requirements:

-Unit Edge Costs
-Reversible Operators
-Consistent Heuristic

S

S

S

1

1

Mod Three Breath-First Search

Introduced by Cooperman and Finkelstein in 1992.

Method for constructing a hash table which can give us informations about the
location of a node inside a graph and its distance to the root.

Uses a perfect hash function to assign hash table entries to states.

Gives each entry a value between 0 and 2, uses the value 3 as indicator whether a
state was expanded already or not.

This means each entry in the hash tabe has one of 4 different values and can be
stored in two bits.

G

S S

S
S

S

S

S

S

G

S

S

3.

0

3 3

3
3

3

3

3

3

0

3

3

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

3 3 3 3 3 0 3 3 3 3 3

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

0

1 1

3
1

3

3

3

3

0

3

3

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

3 3 3 3 1 0 1 3 3 1 3

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

0

1 1

2
1

2

2

2

3

0

3

3

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

3 3 3 2 1 0 1 2 2 1 2

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

0

1 1

2
1

2

2

2

0

0

3

0

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

3 0 0 2 1 0 1 2 2 1 2

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

0

1 1

2
1

2

2

2

0

0

1

0

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

0 0 0 2 1 0 1 2 2 1 2

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

0

1

2

2

0
1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

0 0 0 2 1 0 1 2 2 1 2

1.

2.

3.

6.

7.

8.

9.

12.

0

h = 4

0
3.

0

1 1

2
1

2

2

2

0

0

1

0

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

0 0 0 2 1 0 1 2 2 1 2

1.

2.

3.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0

12.

h = 2

3.

0

2

0

1

h = x

h = x+1

h = x

h = x-1

1

2

0

1

h = x

h = x

h = x-1

h = x+1

2

2

0

1

h = x

h = x-1

h = x+1

h = x

Estimating heustic values on the go

1.6 Bit Pattern Databases
Its possible to compress the two bit database even further, because only three
values are required for storing the heuristic values modulo three.

We do this by fitting as many pattern as possible in one byte.

Since 1 byte equals to 256 different possible values, the largest base 3 number
that can be stored inside a byte is 243, which is 35. This means, we can fit 5
modulo 3 values in one byte.

Thus, we compress our two bit database even further by a factor of five and use
now only 1.6 bits per pattern.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

0 0 0 2 1 0 1 2 2 1 2
12.

0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1

1.6 Bit Pattern Databases

Disadvantages:

Slightly more exprensive for lookup (Needs integer division by 5 and modulo
operator instead of shift and bitwise operator needed for 2 Bit databases)

We need a seperate table for checking which patterns have been generated.

Theoretically we would only need (n*log23)/8 bits, this means we would use 1.58
bits per state saved. The problem is, the lookup will get too expensive and the
resulting gain in memory is marginal. The whole PDB would be stored as one
large number and we would have to extract our heuristic estimates from that
number.

Results - (17,4) Top Spin Puzzle

-Limit of 2GB RAM

-Tow Bit / 1.6 Bit are the techniques
presented in this paper

- Mod 2 / Mod 2.5 (applies the
Modulo Function to the Hash value,
only minimum heuristic value is
saved)

Results - (17,4) Top Spin Puzzle

In Table 2, the two bit algorithm can
use a 10-token PDB, while the
uncompressed PDB has to use a 9-
token pdb due to memory
constraints.

1.6 Bit wasn‘t used because
11-token PDB‘s couldnt be realized
by either compression variant.

Results - Rubik‘s Cube

Results - Rubik‘s Cube

Two bit and 1.6 bit compression
generate the same amounth of
nodes as the uncompressed PDB,
but need much less memory, while
adding little overhead.

Results - Rubik‘s Cube

Table 4 shows the cababilites of two
bit and 1.6 bit PDB‘s for rubik‘s
cube.

If we compare them with other
compression methods, we see that
the other methods need to expand
much more nodes due to their lossy
compression.

Results - Rubik‘s Cube

In row 7/8, we can see that our Two
Bit PDB is 4 times faster than the
current state of the art algorithm if
we use the available memory most
efficently.

The Dual solver could use only a 7-
edge cubie PDB due to the 2GB
memory constraint, while Two Bit
could use 8 edge cubies.

Results - 18 Disk Tower of Hanoi

-16 disk PDBs used

-16n is lossy compression using
cliques, n denotes the number of
ignored smallest disks

-161, althought lossy, generates not
that much more nodes

-16n is capable to compress even
further than 1.6 bit

Results

- The authors introduced a lossless compression which is able to store a
consistent heuristics in just 2 or 1.6 bits per state.

- Improvements are largely given by the type of problem. For Rubik‘s cube and
the top spin puzzle, there are large benefits for using this compression method.
4-peg towers of hanoi and sliding-tile puzzles show only marginal or no
improvements at all.

-Two or 1.6 Bit Pattern Databases are useful for problems where lossy
compression leads to a very high number of additional expansions. This will
happen wenn we can‘t use cliques or if adjacent entries in the PDB are not highly
correlated.

-The most benefit we can get from compression methods is fitting a better PDB
in the same space as a uncompressed worse PDB.

