
Additive Pattern Database Heuristics

Ariel Felner
Richard E. Korf

Sarit Hanan

Pier Paolo Bortoluzzi

November 15, 2012



Additive Pattern Database Heuristics

Additive Pattern Database Heuristics

Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Additive Pattern Database Heuristics

Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Additive Pattern Database Heuristics

Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Disjoint or Statically-Partitioned Additive Database
Heuristic

I Only count moves of the tiles within the group to avoid
overestimation

I Fails to capture interactions between tiles in different groups

P. Bortoluzzi



Additive Pattern Database Heuristics

Disjoint or Statically-Partitioned Additive Database
Heuristic

I Only count moves of the tiles within the group to avoid
overestimation

I Fails to capture interactions between tiles in different groups

P. Bortoluzzi



Additive Pattern Database Heuristics

Disjoint or Statically-Partitioned Additive Database
Heuristic

I Only count moves of the tiles within the group to avoid
overestimation

I Fails to capture interactions between tiles in different groups

P. Bortoluzzi



Additive Pattern Database Heuristics

Dynamically-Partitioned Database Heuristics

”Consider a table which contains for each pair of tiles, and each
possible pair of positions they could occupy, the number of moves
required of those two tiles to move to their goal positions.”

Given n tiles, there are O(n4) entries.

P. Bortoluzzi



Additive Pattern Database Heuristics

Dynamically-Partitioned Database Heuristics

”Consider a table which contains for each pair of tiles, and each
possible pair of positions they could occupy, the number of moves
required of those two tiles to move to their goal positions.”

Given n tiles, there are O(n4) entries.

P. Bortoluzzi



Additive Pattern Database Heuristics

Linear Conflict

Manhattan-Distance: 2
Considering Linear conflict: +2

P. Bortoluzzi



Additive Pattern Database Heuristics

Linear Conflict

Manhattan-Distance: 2

Considering Linear conflict: +2

P. Bortoluzzi



Additive Pattern Database Heuristics

Linear Conflict

Manhattan-Distance: 2
Considering Linear conflict: +2

P. Bortoluzzi



Additive Pattern Database Heuristics

Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.

P. Bortoluzzi



Additive Pattern Database Heuristics

Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.

P. Bortoluzzi



Additive Pattern Database Heuristics

Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.

P. Bortoluzzi



Additive Pattern Database Heuristics

Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.

P. Bortoluzzi



Additive Pattern Database Heuristics

Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.

P. Bortoluzzi



Additive Pattern Database Heuristics

Value of a State using Pairwise Distance

We can not simply sum the DB values for each pair of tiles, we only
need n/2 non-overlapping pairs (and a single manhattan distance).

Goal: Maximize this sum over all non-overlapping pairs, but how?
Mutual Cost Graphs!

P. Bortoluzzi



Additive Pattern Database Heuristics

Value of a State using Pairwise Distance

We can not simply sum the DB values for each pair of tiles, we only
need n/2 non-overlapping pairs (and a single manhattan distance).

Goal: Maximize this sum over all non-overlapping pairs, but how?

Mutual Cost Graphs!

P. Bortoluzzi



Additive Pattern Database Heuristics

Value of a State using Pairwise Distance

We can not simply sum the DB values for each pair of tiles, we only
need n/2 non-overlapping pairs (and a single manhattan distance).

Goal: Maximize this sum over all non-overlapping pairs, but how?
Mutual Cost Graphs!

P. Bortoluzzi



Additive Pattern Database Heuristics

Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .

P. Bortoluzzi



Additive Pattern Database Heuristics

Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .

P. Bortoluzzi



Additive Pattern Database Heuristics

Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .

P. Bortoluzzi



Additive Pattern Database Heuristics

Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .

P. Bortoluzzi



Additive Pattern Database Heuristics

Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .

P. Bortoluzzi



Additive Pattern Database Heuristics

Weighted Vertex Cover Distance

Domain-specific enhancement:

P. Bortoluzzi



Additive Pattern Database Heuristics

Experimental Results

P. Bortoluzzi



Additive Pattern Database Heuristics

Thank you for listening

Questions?

P. Bortoluzzi


