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Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Additive Pattern Database Heuristics

Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Additive Pattern Database Heuristics

Why?

Non-additive pattern databases don’t scale well

Two ways to create additive pattern databases:

I Statically-partitioned (old)

I Dynamically-partitioned (new)

P. Bortoluzzi



Additive Pattern Database Heuristics

Disjoint or Statically-Partitioned Additive Database
Heuristic

I Only count moves of the tiles within the group to avoid
overestimation

I Fails to capture interactions between tiles in different groups
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Dynamically-Partitioned Database Heuristics

”Consider a table which contains for each pair of tiles, and each
possible pair of positions they could occupy, the number of moves
required of those two tiles to move to their goal positions.”

Given n tiles, there are O(n4) entries.
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Linear Conflict

Manhattan-Distance: 2
Considering Linear conflict: +2
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Pairwise Distance

How do we compute such tables?

1. Start with the goal state of a pair.

2. Perform breadth-first search.

3. Store each unique state until all have been found.

4. Rinse and repeat for all n(n − 1)/2 different pairs.
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Value of a State using Pairwise Distance

We can not simply sum the DB values for each pair of tiles, we only
need n/2 non-overlapping pairs (and a single manhattan distance).

Goal: Maximize this sum over all non-overlapping pairs, but how?
Mutual Cost Graphs!
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Higher-Order Distances

Can be accomplished by using a step-ladder approach:

1. Create a 1-tile pattern database (Manhattan distances of all
tiles at each position)

2. 2-tile pdb has to store only the cases where it exceeds the
sum of 1-tile pdb

3. 3-tile pdb stores cases where they exceed either the sum of
their Manhattan distances or the pairwise heuristic of the
three tiles.

4. k-tile . . .
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Weighted Vertex Cover Distance

Domain-specific enhancement:
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Experimental Results
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Thank you for listening

Questions?
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