
Limited Discrepancy Beam Search

Paper by: David Furcy & Sven Koenig

Presentation by: Michael Niggli

November 1, 2012

Presention made as part of the proceedings of the 2012 fall semester’s Search and Optimization seminar at the
University of Basel

Beam Search

• Optimization of Best-First search to reduce memory usage,
sacrificing completeness

• Build search tree using breadth-first
• On each level:

• Expand all successors for the current level’s states
• Order by heuristic
• Drop all but the best b successor states (yielding a beam width

of b)
• Terminate upon reaching a goal state or exhausting memory

(or the searched space)

Beam Search

..S..............

Beam width = 2
.. Nodes contained in the Beam.. Nodes that were expanded, but pruned.. Nodes that were not expanded at all

Beam Search (unsorted)

..S..............

Beam width = 2
.. Nodes contained in the Beam.. Nodes that were expanded, but pruned.. Nodes that were not expanded at all

Beam Search vs. 48-Puzzle

b Path length States generated States stored Runtime (s) Problems solved

1 N/A N/A N/A N/A 0 %
5 11737.12 147239 58680 0.09 100 %

10 36281.64 904632 362799 0.601 100 %
50 25341.44 3211244 1266902 2.495 86 %

100 12129.88 3079594 1212579 2.296 86 %
500 2302.86 2899765 1148559 2.205 74 %

1000 1337.95 3346004 1331451 2.822 84 %
5000 481.30 5814061 2365603 5.500 86 %

10000 440.07 10569816 4312007 11.307 80 %
50000 N/A N/A N/A N/A 0%

• Larger Beams
→ better solutions, higher memory consumption
→ not necessarily more solutions

Improving Beam search

• Goal: 100% of the puzzles solved, with shorter solutions paths
• Varying beam width won’t work - larger beams find less

solutions, smaller ones find longer paths
• Misleading heuristic values prevent finding of a solution

• Backtracking to beam search circumvents this
• Let’s call this Depth-first Beam search (DB)

Improving Beam search

• Goal: 100% of the puzzles solved, with shorter solutions paths
• Varying beam width won’t work - larger beams find less

solutions, smaller ones find longer paths
• Misleading heuristic values prevent finding of a solution
• Backtracking to beam search circumvents this
• Let’s call this Depth-first Beam search (DB)

Depth-first Beam search (DB)

..........S..............

Depth-first Beam search (DB)

..........S..............

Depth-first Beam search (DB)

..........S..............

Note: Nodes are expanded a second time!

Depth-first Beam search (DB)

..........S..............

Depth-first Beam search (DB)

..........S..............

Depth-first Beam search (DB)

• DB is very slow
• Presumed reason: heuristics mislead early on rather than close

to the goal
• Idea: Revisit states closer to the start early; heuristics fail

there more often than further down the tree.

Limited Discrepancy Search

• Designed for finite binary trees
• Successors are sorted by heuristic, the better option is always

left
• A discrepancy is choosing right over left against the heuristic

value
• Try finding a solution first without, then with increasing

number of allowed discrepancies (until a solution is found)

Limited Discrepancy Search
................

LDS without any allowed discrepancies

Limited Discrepancy Search
................

LDS with 1 allowed discrepancy

Limited Discrepancy Search
................

LDS with 1 allowed discrepancy

Limited Discrepancy Search
................

LDS with 1 allowed discrepancy

Limited Discrepancy Search
................

LDS with 1 allowed discrepancy

Generalized LDS

• LDS was for binary trees only
• Use hash table for cycle detection in GLDS
• Count going to a non-best successor as one discrepancy
• A discrepancy of one thus allows us to search the sub-trees

under all non-best successors with a discrepancy of zero

BULB – Beam Search Using Limited Discrepancy
Backtracking

• GLDS combined with Depth-first Beam search
• As in DB, we work with slices of states

..BFS. Beam Search. DB.

DFS

.

LDS

.

GLDS

. BULB

Influences between algorithms

BULB – Beam Search Using Limited Discrepancy
Backtracking

• GLDS combined with Depth-first Beam search
• As in DB, we work with slices of states

..BFS. Beam Search. DB.

DFS

.

LDS

.

GLDS

. BULB

Influences between algorithms

Properties of BULB

• Memory consumption O(Bd), with beam width B and max
search tree depth d

• Complete (we find a solution if one exists and we have enough
memory to find it)

• Being complete makes BULB better than Beam search
• Maximum tree depth ~M/B, where M is the available memory

(better than Breadth-first search, which has max depth of
only logB M)

• Pretty fast (in experiments)

Experiments - N-Puzzle

• 48-Puzzle
• BULB solves all instances with beam width 10000, avg. path

length of 440
• Regular beam search had avg. length of 11737 when solving all

instances! (B=5)
• 80-Puzzle, memory for 3’000’000 states

• Not all 50 random instances solvable with Beam search
• BULB does them all
• Fastest run: 12 seconds, avg. path length ~181000
• Spending 120 seconds brings avg. path length of ~1130, just 5

times the shortest path

Experiments - 4-Peg Towers of Hanoi

• 50 random instances with 22 disks each
• Memory capacity for 1’000’000 states
• Pattern DB as heuristic function
• Not all solved by beam search
• Fastest average run time with BULB: 1.5s (b=40)
• b = 1000 takes 7s, but brings path length down to 870 (from

10’000)

Questions?

?

