Limited Discrepancy Beam Search

Paper by: David Furcy & Sven Koenig

Presentation by: Michael Niggli

November 1, 2012

Presention made as part of the proceedings of the 2012 fall semester’'s Search and Optimization seminar at the
University of Basel



Beam Search

Optimization of Best-First search to reduce memory usage,
sacrificing completeness

Build search tree using breadth-first

On each level:

« Expand all successors for the current level's states

+ Order by heuristic

- Drop all but the best b successor states (yielding a beam width
of b)

Terminate upon reaching a goal state or exhausting memory
(or the searched space)



Beam Search

/

[
O O

@ Nodes contained in the Beam
@ Nodes that were expanded, but pruned
@ Nodes that were not expanded at all

Beam width = 2



Beam Search (unsorted)

[
O

@ Nodes contained in the Beam
@ Nodes that were expanded, but pruned
@ Nodes that were not expanded at all

Beam width = 2



Beam Search vs. 48-Puzzle

b Path length States generated States stored Runtime (s) Problems solved

1 N/A N/A N/A N/A 0%

5 11737.12 147239 58680 0.09 100 %

10 36281.64 904632 362799 0.601 100 %

50 25341.44 3211244 1266902 2.495 86 %
100 12129.88 3079594 1212579 2.296 86 %
500 2302.86 2899765 1148559 2.205 74 %
1000 1337.95 3346004 1331451 2,822 84 %
5000 481.30 5814061 2365603 5.500 86 %
10000 440.07 10569816 4312007 11.307 80 %
50000 N/A N/A N/A N/A 0%

Larger Beams

— better solutions, higher memory consumption
— not necessarily more solutions



Improving Beam search

= Goal: 100% of the puzzles solved, with shorter solutions paths

= Varying beam width won't work - larger beams find less
solutions, smaller ones find longer paths

= Misleading heuristic values prevent finding of a solution



Improving Beam search

Goal: 100% of the puzzles solved, with shorter solutions paths

Varying beam width won't work - larger beams find less
solutions, smaller ones find longer paths

Misleading heuristic values prevent finding of a solution
Backtracking to beam search circumvents this
Let's call this Depth-first Beam search (DB)



Depth-first Beam search (DB)

(5




Depth-first Beam search (DB)

(5

AP




Depth-first Beam search (DB)

(s)
D0
ons/ledeRaxe

Note: Nodes are expanded a second time!




Depth-first Beam search (DB)

(2

e .




Depth-first Beam s

@@6@/@“@




Depth-first Beam search (DB)

DB is very slow
Presumed reason: heuristics mislead early on rather than close
to the goal

Idea: Revisit states closer to the start early; heuristics fail
there more often than further down the tree.



Limited Discrepancy Search

Designed for finite binary trees

Successors are sorted by heuristic, the better option is always
left

A discrepancy is choosing right over left against the heuristic
value

Try finding a solution first without, then with increasing
number of allowed discrepancies (until a solution is found)



Limited Discrepancy Search

fo¥e!

LDS without any allowed discrepancies



Limited Discrepancy Search

/
O

LDS with 1 allowed discrepancy



Limited Discrepancy Search

LDS with 1 allowed discrepancy



Limited Discrepancy Search

LDS with 1 allowed discrepancy



Limited Discrepancy Search

LDS with 1 allowed discrepancy



Generalized LDS

LDS was for binary trees only
Use hash table for cycle detection in GLDS
Count going to a non-best successor as one discrepancy

A discrepancy of one thus allows us to search the sub-trees
under all non-best successors with a discrepancy of zero



BULB — Beam Search Using Limited Discrepancy
Backtracking

= GLDS combined with Depth-first Beam search

= As in DB, we work with slices of states



BULB — Beam Search Using Limited Discrepancy
Backtracking

= GLDS combined with Depth-first Beam search

= As in DB, we work with slices of states

DFS —— LDS —— GLDS

S

BFS ——— Beam Search DB BULB

Influences between algorithms



Properties of BULB

Memory consumption O(Bd), with beam width B and max
search tree depth d

Complete (we find a solution if one exists and we have enough
memory to find it)

Being complete makes BULB better than Beam search

Maximum tree depth ~M/B, where M is the available memory
(better than Breadth-first search, which has max depth of
only logg M)

Pretty fast (in experiments)



Experiments - N-Puzzle

= 48-Puzzle
» BULB solves all instances with beam width 10000, avg. path

length of 440
- Regular beam search had avg. length of 11737 when solving all

instances! (B=5)
= 80-Puzzle, memory for 3'000'000 states
- Not all 50 random instances solvable with Beam search

- BULB does them all

. Fastest run: 12 seconds, avg. path length ~181000

- Spending 120 seconds brings avg. path length of ~1130, just 5
times the shortest path



Experiments - 4-Peg Towers of Hanoi

50 random instances with 22 disks each

Memory capacity for 1'000'000 states

Pattern DB as heuristic function

Not all solved by beam search

Fastest average run time with BULB: 1.5s (b=40)

b = 1000 takes 7s, but brings path length down to 870 (from
10'000)



Questions?



