
ITSA*: Iterative Tunneling Search
with A*
David A. Furcy

(University of Wisconsin)

Action Elimination and Plan
Neighborhood Graph Search: Two
Algorithms for Plan Improvement

Hootan Nakhost, Martin Müller
(University of Alberta)

Basil Kohler, 1.11.2012

Topic

•  Improving suboptimal solutions
o  Take a solution
o  (Iteratively) improve solution

•  Anytime algorithms - run until
o  There is no time left
o  There is no memory left
o  The solution cannot be improved by the algorithm

Action Elimination (AE)

•  STRIPS planning task with suboptimal plan
π = (a1, a2, ..., an)

•  Remove a1

•  Try a2 ... an, remove each non-applicable ai

•  π not valid:
o  re-add removed actions to π

•  Continue testing next actions analogously

next ai

AE Properties

•  Works directly on the plan
•  Shorter π better → interrupt any time
•  Simple and fast
•  Greedy
•  O(p n2)

o  p: max. number of preconditions
o  n: length of plan

Illustration

ITSA*: It's a star!
Iterative Tunneling Search with A*

•  Solution path P
•  States in P get a value of 0, childs 1
•  Modified A* search from start s0 with iteration

number (IN) 1:
o  Only add states to OPEN if current IN ≥ valuestate

o  Created states get parents value +1
o  Stop when the goal is found

•  Restart A* search from s0 with incremented
iteration number

Illustration

One-step and Multi-step ITSA*

•  One-step ITSA*
o  Run ITSA* until memory is full

•  Multi-step ITSA*
o  Run ITSA* until memory is full
o  Take new solution, re-run ITSA* until memory is full
o  Repeat until:

§  no time left
§  the solution does not change

ITSA* Properties

•  Anytime
o  Each ITSA* iteration can improve solution
o  Each ITSA* step can improve solution

•  No parameter
•  Optimal plan given enough time and memory

o  last iteration: A* search with all states

•  Set of states of current solution
•  M searches each state with exploration limit L

o  M: deterministic graph search method
o  L: limit on number of expanded nodes

•  NG: Subgraph explored by these searches
•  Compute shortest path from s0 to G in NG

o  A*, Dijkstra ...

Neighborhood Graph Search (NGS)

Searching the Neighborhood

NG Search Properties
•  Mix of optimal and greedy search:

o  Greedy: Build neighborhood with limit L
o  Optimal: Shortest path in neighborhood

•  Anytime
o  Start with small L
o  New solution as input, double L
o  M-search is bound by (L+1)(n+1) states

•  Build NG with different M's (e.g., A* and
bbfs) and combine them
⇒ more "general" neighborhood?

•  Parameter L

One-step ITSA*

Multi-step ITSA*

AE, PNGS, PNGS + AE

•  PNGS + AE*: alternating
AE and PNGS

•  AE identifies irrelevant
actions

•  PNG searches for
shortcuts

ITSA* vs PNGS for Planning Tasks

Conclusion

•  PNGS (+AE) superior to ITSA*
•  ITSA* no parameter, easy to handle
•  PNGS is more flexible:

o  Appropriate search algorithms can be chosen

•  PNGS always with AE:
o  AE cheap and very fast (several minutes vs 1s)

Conclusion

•  Solution almost always improved
•  Improvement depends on the domain
•  Again: A good solution is difficult to improve
•  Anytime algorithms are convenient

Domains for the Software Projects

Domains for the Software Projects

