ITSA*: Iterative Tunneling Search with A*

David A. Furcy (University of Wisconsin)

Action Elimination and Plan Neighborhood Graph Search: Two Algorithms for Plan Improvement

Hootan Nakhost, Martin Müller (University of Alberta)

Basil Kohler, 1.11.2012

Topic

- Improving suboptimal solutions
 - Take a solution
 - o (Iteratively) improve solution
- Anytime algorithms run until
 - There is no time left
 - There is no memory left
 - The solution cannot be improved by the algorithm

Action Elimination (AE)

- STRIPS planning task with suboptimal plan $\pi = (a_1, a_2, ..., a_n)$
- Remove a₁
- Try a₂ ... a_n, remove each non-applicable a_i

next a

- π not valid:
 - $_\circ$ re-add removed actions to π
- Continue testing next actions analogously

AE Properties

- Works directly on the plan
- Shorter π better \rightarrow interrupt any time
- Simple and fast
- Greedy
- O(p n²)
 - \circ p: max. number of preconditions
 - o n: length of plan

Illustration

ITSA*: It's a star! Iterative Tunneling Search with A*

- Solution path P
- States in P get a value of 0, childs 1
- Modified A* search from start s₀ with iteration number (IN) 1:
 - Only add states to OPEN if current IN ≥ value_{state}
 - Created states get parents value +1
 - $_{\odot}$ Stop when the goal is found
- Restart A* search from s₀ with incremented iteration number

Illustration

One-step and Multi-step ITSA*

- One-step ITSA*
 - Run ITSA* until memory is full
- Multi-step ITSA*
 - Run ITSA* until memory is full
 - Take new solution, re-run ITSA* until memory is full
 - Repeat until:
 - no time left
 - the solution does not change

ITSA* Properties

- Anytime
 - Each ITSA* iteration can improve solution
 - Each ITSA* step can improve solution
- No parameter
- Optimal plan given enough time and memory
 - last iteration: A* search with all states

Neighborhood Graph Search (NGS)

- Set of states of current solution
- M searches each state with exploration limit L
 - M: deterministic graph search method
 - L: limit on number of expanded nodes
- NG: Subgraph explored by these searches
- Compute shortest path from s₀ to G in NG
 A*, Dijkstra ...

Searching the Neighborhood

NG Search Properties

- Mix of optimal and greedy search:
 - Greedy: Build neighborhood with limit L
 - Optimal: Shortest path in neighborhood
- Anytime
 - Start with small L
 - New solution as input, double L
 - M-search is bound by (L+1)(n+1) states
- Build NG with different M's (e.g., A* and bbfs) and combine them
 ⇒ more "general" neighborhood?
- Parameter L

One-step ITSA*

В	BULB		BULB + one-step ITSA*						
	time	cost	time (seconds)			cost			
	(seconds)		value increase over BULB		value	decrease over BULB			
				absolute	relative		absolute	relative	
5	0.1	11,737	5.7	5.6	5,600%	3,140	8,597	73%	
10	0.9	36,282	6.7	5.8	644%	3,233	33,049	91%	
100	6.1	14,354	12.2	6.1	100%	2,052	12,302	86%	
1,000	7.3	1,409	12.8	5.5	75%	746	663	47%	
10,000	21.7	440	27.7	6.0	28%	428	12	3%	

Table 1: Performance of one-step ITSA* on paths found by BULB in the 48-Puzzle (with 6 million nodes in memory)

В	BULB		BULB + one-step ITSA*						
	time	cost	time (seconds)			cost			
	(seconds)		value increase over BULB		value	decrease over BULB			
				absolute	relative		absolute	relative	
10	96.9	108,804.8	100.7	3.8	4%	94,346.6	14,458.2	13%	
100	5.1	1,893.9	7.9	2.8	56%	679.0	1,214.9	64%	
1,000	7.4	275.8	10.2	2.8	38%	178.5	97.3	35%	
10,000	13.8	53.6	18.5	4.7	34%	47.3	6.3	12%	
50,000	39.2	31.2	46.0	6.8	17%	30.6	0.6	2%	
70,000	51.1	30.0	57.3	6.2	12%	28.7	1.3	4%	
100,000	74.8	28.1	81.3	6.5	9%	27.6	0.5	2%	
120,000	127.2	26.0	134.8	7.6	6%	25.7	0.3	1%	

Table 2: Performance of one-step ITSA* on paths found by BULB in the Rubik's Cube (with 3 million nodes in memory)

Multi-step ITSA*

В	BULB		BULB + one-step ITSA*						
	time	cost	time (seconds)			cost			
	(seconds)		value increase over BULB		value	decrease over BULB			
				absolute	relative		absolute	relative	
5	0.1	11,737	5.7	5.6	5,600%	3,140	8,597	73%	
10	0.9	36,282	6.7	5.8	644%	3,233	33,049	91%	
100	6.1	14,354	12.2	6.1	100%	2,052	12,302	86%	
1,000	7.3	1,409	12.8	5.5	75%	746	663	47%	
10,000	21.7	440	27.7	6.0	28%	428	12	3%	

B	BULB		BULB + multi-step ITSA*						
	time	cost	time (seconds)			cost			
	(seconds)		value increase over BULB		value	decrease over BULB			
				absolute	relative		absolute	relative	
5	0.1	11,737	50.3	50.2	50,200%	2,562	9,175	78%	
10	0.9	36,282	53.0	52.1	5,789%	1,808	34,474	95%	
100	6.1	14,354	55.2	49.1	805%	1,159	13,195	92%	
1,000	7.3	1,409	36.7	29.4	409%	674	735	52%	
10,000	21.7	440	42.4	20.7	95%	426	14	3%	

AE, PNGS, PNGS + AE

- PNGS + AE*: alternating AE and PNGS
- AE identifies irrelevant actions
- PNG searches for shortcuts

■Base □AE □PNGS □ PNGS+AE*

ITSA* vs PNGS for Planning Tasks

Figure 2: Total IPC-2008 score for varying cutoff times combining LAMA with M_{A*} , $M_{A*} + M_{bbfs}$ and ITSA*

Conclusion

- PNGS (+AE) superior to ITSA*
- ITSA* no parameter, easy to handle
- PNGS is more flexible:
 - Appropriate search algorithms can be chosen
- PNGS always with AE:
 - AE cheap and very fast (several minutes vs 1s)

Conclusion

- Solution almost always improved
- Improvement depends on the domain
- Again: A good solution is difficult to improve
- Anytime algorithms are convenient

Domains for the Software Projects

Domains for the Software Projects

Elevators