
Breadth-first heuristic search

Paper by Rong Zhou, Eric A. Hansen

Presentation by Salomé Simon



Breadth-first tree search

• Used for search problems with uniform edge
cost
– Prerequisite for presented techniques

• Drawback: all nodes need to be stored

1

32

4 5 6 7



Why store all nodes?

• Solution path reconstruction

• Duplicate detection

S

S

S

S

• Depth-first search can do this with a stack



Memory efficient solution path
recovery

• Divide and conquer principle

• Store one „relay layer“, recursively solve sub-
problems

S

I

G

?

?
All nodes here have a 
pointer to it‘s
ancestor in the relay
layer



Memory efficient duplicate detection

• Frontier search: used operator bits
– No closed list

– Cannot use upper bound for pruning

• Sparse memory: counter for predecessors
– Only nodes with counter ≠ 0 in closed list

– Better for high branching factor

1 1
0 -

- -
- 0

1 -
- -

f cost: ∞



Memory efficient duplicate detection

• Drawbacks

– Need to know predecessors

– A* needs to have a consistent heurisitc



Layered duplicate detection

• Only usable for breadth-first search

• Open list: current and next layer

• Closed list: current and x previous layers

• For undirected graphs (& uniform edge cost): only
one previous layer needs to be stored

• For directed graphs: Max g-cost difference
between optimal g-cost of predecessor and
sucessor (hard to determine)
– But only linear regeneration when one layer is saved



Layered duplicate detection: Example

S

Legend:

2

Current (expansion) layer

Next layer

Previous layer

Expansion order

Invisible nodes

Duplicate expansion



Layered duplicate detection: Example

S

21

3

S

2
1

3



Advantages of heuristic breadth-first
search

• Frontier size is smaller (no proof):

– Breadth-first #layers: f* + 1

– Best first #layers: f* - h(start) + 1

≈ more layers means smaller layer size (if
perfect upper bound)



Advantages of breadth-first search

• No sorting (FIFO)

• Frontier search
– Can prune nodes above upper bound, since optimal 

g(n) is found once the node is expanded
 works also with admissible but not consistent heuristic

– Easier memory allocation since no sorting needed

• Layered duplicate detection
– Only for breadth-first search

– Easiest to implement



Breadth-first branch-and-bound
(BFBnB)

• Lower bound: f(n) = g(n) + h(n)
• Upper bound for pruning unpromising paths

– With perfect upper bound BFBnB expands the same 
nodes as A* (disregarding ties), else more

• Solution path recovery: divide-and-conquer
– Relay layer at 3/4 depth, since 1/2 are usually the

biggest layers (more pruning later)

• Duplicate detection:
– Frontier search
– Sparse memory
– Layered duplicate detection



Breadth-first iterative deepening A* 
(BFIDA*)

• BFBnB with iterative deepening

• Gives perfect upper bound
– Useful when no good upper bound can be

estimated

• Asymptotically optimal for node expansions
– Even in directed graphs under certain conditions

• Does not use tie breaking (not beneficial)
– Tie breaking only useful in last layer, but for

breadth-first this layer is rather small



Results: Fifteen Puzzle

• Used algorithm: frontier-BFIDA*

– Low branching factor

• 4 GB memory limitation

– Frontier- / sparse-memory-A* only solved 96/100

– Maximal memory usage by BFIDA*: 1.3 GB

Frontier A* Sparse memory A* Frontier BFIDA*

#nodes stored 4.15x 2.74x 1x

Peak Memory 6.2x 4.1x 1x



Results: Fifteen Puzzle

• DFIDA* performs best

– More nodes expanded (not all duplicates
detected), but

– Lower node-generation overhead



Results: 4-peg Towers of Hanoi

• Used algorithm: Frontier-BFBnB

– A (probably) perfect upper bound can be found

• 2 GB memory limitation

– Only BFBnB could solve 19-disk problem

• Inconsistent heuristic

– Frontier-A* is not guaranteed to find optimal 
solution



Results: 4-peg Towers of Hanoi

Disks Frontier A*
Nodes Stored

Frontier A*
Expanded

Frontier BFBnB
Stored

Frontier BFBnB
Expanded

17 2‘126‘885 10‘398‘240 390‘844 11‘628‘818

18 25‘987‘984 202‘577‘805 6‘987‘695 211‘993‘782

19 > 128‘000‘000 > 1‘193‘543‘025 55‘241‘327 1‘824‘553‘083



Results: Domain independent STRIPS 
planning

• Used algorithm: BFBnB with layered duplicate
detection
– easier to implement when not knowing the domain

– even in domains with directed graphs one stored layer
gives good results

• Compared to A* and DFIDA*

• BFBnB expands more nodes than A*, but uses
significantly less memory

• DFIDA* performs poor due to excessive node
regeneration



Results: General observations

• Compared to A*, Breadth-first has

– Significantly less memory usage

– More node expansions (especially if upper bound
not perfect)

• Layered duplicate detection easy to
implement and gives good results


