Foundations of Artificial Intelligence

45. Board Games: Monte-Carlo Tree Search Configurations

Thomas Keller and Florian Pommerening
University of Basel

May 24, 2023



Board Games: Overview

chapter overview:

e 40.
e 41.
e 42,
e 43.
e 44,
@ 45,

Introduction and State of the Art
Minimax Search and Evaluation Functions
Alpha-Beta Search

Stochastic Games

Monte-Carlo Tree Search Framework

Monte-Carlo Tree Search Configurations



Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := utility(n.position)
else:
s := n.get_unvisited_successor()
if s is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
utility :== simulate_game(s)
n.add_and_initialize_child_node(s, utility)
nN:=nN+1 X
n.V:=nv+ ﬂl’;%
return utility




Simulation Phase



Simulation Phase

0e00

Simulation Phase

idea: determine initial utility estimate by
simulating game following a default policy

Definition (default policy)

Let S = (S, A, T,s;,S,, utility, player) be a game.
A default policy for S is a mapping mTdefauit : S X A — [0,1] s.t.

Q Tdefauit(s, a) > 0 implies that there is s’ € S with
T(s,a,s’) >0 and

Q > .caTdefault(s,a) =1 forall s e S.

in the call to simulate_game(s’),
o the default policy is applied starting from position s’
(determining decisions for both players)
@ until a terminal position s* is reached
e and utility(s*) is returned



Simulation Phase
[e]e] e}

Implementations

“default” implementation: Monte-Carlo random walk
@ in each position, select a move uniformly at random
@ until a terminal position is reached

@ very cheap to compute



Simulation Phase
[e]e] e}

Implementations

“default” implementation: Monte-Carlo random walk
@ in each position, select a move uniformly at random
@ until a terminal position is reached
@ very cheap to compute
@ uninformed ~ usually not sufficient for good results

@ not always cheap to simulate



Simulation Phase

[e]e] o]

Implementations

“default” implementation: Monte-Carlo random walk

in each position, select a move uniformly at random
until a terminal position is reached

very cheap to compute

uninformed ~~ usually not sufficient for good results

not always cheap to simulate

alternative: game-specific default policy

hand-crafted or

learned offline

Sylvain Gelly and David Silver, Combining Online and Offline Knowledge in UCT (ICML, 2007)



Simulation Phase
[e]e]e] ]

Default Policy vs. Evaluation Function

@ default policy simulates a game to obtain utility estimate ~~
default policy must be evaluated in many positions

o if default policy is expensive to compute or poorly informed,
simulations are expensive

@ observe: simulating a game to the end is just a
specific implementation of an evaluation function

@ modern implementations replace default policy with
evaluation function that directly computes a utility estimate

~» MCTS is a heuristic search algorithm



€0000

Tree Policy



Tree Policy
(o] Jelele]

Objective of Tree Policy (1)




Tree Policy
0®000

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
~ prefer successors with high (max)
or low utility estimate (min)




Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary
(o] Jelele]

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
~ prefer successors with high (max)
or low utility estimate (min)

explore areas that have

not been investigated thouroughly

~~ also consider other successors,
in particular with low visit count




Simulation Phase Tree Policy Tree Policy: Examples rison of Game Algori ummary
(o] Jelele]

Objective of Tree Policy (1)

exploit collected information to These are contradictory objectives!

focus search on promising areas ~~ 1st central challenge for tree policy:
~ prefer successors with high (max) balance exploration and exploitation
or low utility estimate (min)

explore areas that have

not been investigated thouroughly

~~ also consider other successors,
in particular with low visit count




Tree Policy
[e]e] le]e]

Objective of Tree Policy (I1)

What's wrong with this subtree?




Tree Policy
[e]e] le]e]

Objective of Tree Policy (I1)

What's wrong with this subtree?

right move is better for min, but left move
has higher influence on utility estimate




Tree Policy
[e]e] le]e]

Objective of Tree Policy (I1)

What's wrong with this subtree?

right move is better for min, but left move
has higher influence on utility estimate

~» 2nd central challenge for tree policy:

exploit much more often than explore
(in the limit)




Tree Policy
00080

Asymptotic Optimality

Definition (asymptotic optimality)
Let S be a game with set of positions S and let v*(s) denote the
(true) utility of position s € S.

Let n.0% denote the utility estimate
of a search node n after k trials.

An MCTS algorithm is asymptotically optimal if

lim n.0% = v*(n.position)

k—00

for all search nodes n.




Tree Policy
0000e

Asymptotic Optimality

a tree policy is asymptotically optimal if

@ it explores forever:

@ and

every position is eventually added to the game tree

and visited infinitely often

(requires that the game tree is finite)

after a finite number of trials, all trials end in a terminal
position and the default policy is no longer used

it is greedy in the limit:
the probability that an optimal move is selected converges to 1

in the limit, backups based on trials where only
an optimal policy is followed dominate suboptimal backups



Tree Policy: Examples

0000000000

Tree Policy: Examples



Tree Policy: Examples
[e] lelelelelele]e]e]

e-greedy: ldea and Example

@ tree policy with constant parameter ¢
@ with probability 1 — ¢, pick a greedy move which leads to:

e a successor with highest utility estimate (for max)
e a successor with lowest utility estimate (for min)

@ otherwise, pick a non-greedy successor uniformly at random



Tree Policy: Examples
[e] lelelelelele]e]e]

e-greedy: ldea and Example

@ tree policy with constant parameter ¢
@ with probability 1 — ¢, pick a greedy move which leads to:

e a successor with highest utility estimate (for max)
e a successor with lowest utility estimate (for min)

@ otherwise, pick a non-greedy successor uniformly at random

e=0.2

P(n) = 0.1 P(ny) = 0.8 P(n3) = 0.1

(P(n) denotes probability that successor n is selected)



Tree Policy: Examples
[e]e] lelelelele]e]e]

e-greedy: Optimality

e-greedy is not asymptotically optimal:

converges to
0.8-1+4+0.2-10
with kK — oo

variants that are optimal in the limit exist
(e.g., decaying £, minimax backups)



Tree Policy: Examples

[e]e]e] le]ele]e]e]e)

e-greedy: Weakness

problem:
when e-greedy explores, all non-greedy moves are treated equally

¢ nodes

eg.,e=02/¢=09 P(n)=0.8, P(n)=0.02



Tree Policy: Examples
[e]e]ele] Telele]e]e]

Softmax: Idea and Example

@ tree policy with constant parameter 7 > 0

@ select moves with a frequency that directly relates
to their utility estimate

@ Boltzmann exploration selects moves proportionally to
P(n) o< e’ for max and to P(n) oc e+ for min



Tree Policy: Examples
[e]e]ele] Telele]e]e]

Softmax: Idea and Example

@ tree policy with constant parameter 7 > 0

@ select moves with a frequency that directly relates
to their utility estimate

@ Boltzmann exploration selects moves proportionally to
P(n) o< e’ for max and to P(n) oc e+ for min

¢ nodes

eg., 7=10,0=9: P(n)~0.51, P(ny) ~ 0.46



Tree Policy: Examples

00000e0000

Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:

converges to
=10 ~0.71-140.29-10
with kK — oo

variants that are optimal in the limit exist
(e.g., decaying 7, minimax backups)



Tree Policy: Examples
0000008000

Boltzmann Exploration: Weakness

m mq
m3

m3

scenario 1: high variance for ms scenario 2: low variance for ms

@ Boltzmann exploration only considers mean
of sampled utilities for the given moves

@ as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

@ Boltzmann exploration ignores the variance,
treating the two scenarios equally



Tree Policy: Examples
0O000000e00

Upper Confidence Bounds: ldea

balance exploration and exploitation by preferring moves that
@ have been successful in earlier iterations (exploit)

@ have been selected rarely (explore)



Tree Policy: Examples
0000000080

Upper Confidence Bounds: ldea

upper confidence bound for max:
o select successor n’ of n that maximizes n'.0 + B(n')
@ based on utility estimate n’.¥
e and a bonus term B(n’)
e select B(n') such that v*(n’.position) < n'.V + B(n')
with high probability

e idea: n'.0 + B(n') is an upper confidence bound
on n'.¥ under the collected information

(for min: maximize —n".0 + B(n'))



Tree Policy: Examples
000000000 e

Upper Confidence Bounds: UCB1

o use B(n') = /24N a5 bonus term

@ bonus term is derived from Chernoff-Hoeffding bound, which

o gives the probability that a sampled value (here: n’.?)
o is far from its true expected value (here: v*(n’.position))
o in dependence of the number of samples (here: n’.N)

@ picks an optimal move exponentially more often in the limit



Tree Policy: Examples
000000000 e

Upper Confidence Bounds: UCB1

o use B(n') = /24N a5 bonus term

@ bonus term is derived from Chernoff-Hoeffding bound, which

o gives the probability that a sampled value (here: n’.?)
o is far from its true expected value (here: v*(n’.position))
o in dependence of the number of samples (here: n’.N)

@ picks an optimal move exponentially more often in the limit

UCBL1 is asymptotically optimal



Comparison of Game Algorithms

@00

Comparison of Game Algorithms



Minimax Tree

full tree up to depth 4

I (ll I m\ ll MMI L m\ il lMI\ I m il lMI\ I m ll m\l (ll I m\ ll llmu tl L



Minimax Tree

full tree up to depth 4

I (ll I m\ ll MMI L m\ il lMI\ I m il lMI\ I m ll m\l (ll I m\ ll llmu tl L

What about alpha-beta search?
~~ depth 5-6 (can be improved with good move ordering)



Al

/

!




Summary



Summary
oce

Summary

@ tree policy is crucial for MCTS

e c-greedy favors greedy moves and treats all others equally
e Boltzmann exploration selects moves proportionally to

an exponential function of their utility estimates
e UCBI1 favors moves that were successful in the past

or have been explored rarely

@ for each, there are applications where they perform best

@ good default policies are domain-dependent and hand-crafted
or learned offline

@ using evaluation functions instead of a default policy often
pays off



	Simulation Phase
	

	Tree Policy
	

	Tree Policy: Examples
	

	Comparison of Game Algorithms
	

	Summary
	


