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Board Games: Overview

chapter overview:

▶ 40. Introduction and State of the Art

▶ 41. Minimax Search and Evaluation Functions

▶ 42. Alpha-Beta Search

▶ 43. Stochastic Games

▶ 44. Monte-Carlo Tree Search Framework

▶ 45. Monte-Carlo Tree Search Configurations
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Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

▶ systematic exploration of search space

▶ computation of (state) quality
follows performance metric

algorithms considered today:

search based on Monte-Carlo methods:

▶ sampling of game simulations

▶ estimation of (state) quality by
averaging over simulation results

T. Keller & F. Pommerening (University of Basel)Foundations of Artificial Intelligence May 24, 2023 5 / 17

44. Board Games: Monte-Carlo Tree Search Framework Introduction

Game Applications

board games hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Maciej Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (AIR, 2023)
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Applications Beyond Games

story generation chemical synthesis UAV routing

coast security forest harvesting Earth oberservation

Maciej Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (AIR, 2023)
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MCTS Environments

MCTS environments cover entire spectrum of properties
⇝ need some restrictions

we study MCTS under the same restrictions as last week, i.e.,

▶ environment classification,

▶ problem solving method,

▶ objective of the agent and

▶ performance measure

are identical to last week

MCTS extensions exist that allow to drop most restrictions
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44.2 Monte-Carlo Tree Search
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Data Structures

Monte-Carlo tree search

▶ is a tree search variant
⇝ no closed list

▶ iteratively performs game simulations from the initial position
(called trial or rollout)
⇝ no (explicit) open list

⇝ search nodes are the only used data structure
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Data Structure: Search Nodes
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

▶ build a partial game tree

▶ by performing trials as long as resources
(deliberation time, memory) allow

▶ initially, the tree contains only the root node

▶ each trial adds (at most) one search node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

▶ until a node with associated terminal position

▶ or a node with missing successor is reached

expansion:
for one of the missing successors,
add a search node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no search nodes are added to the tree)

backpropagation:
update visited search nodes n in reverse order:

▶ increase the visit counter n.N by 1

▶ update utility estimate n.v̂ with
utility from reached terminal positions

perform next iteration if ressources allow and
play move with highest utility estimate otherwise
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Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

n0 := create root node()
while time allows():

visit node(n0)
nbest := argmaxn∈succ(n0) n.v̂
return nbest.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility
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44.3 Summary
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Summary

▶ Monte-Carlo methods compute averages
over a number of random samples.

▶ Monte-Carlo Tree Search (MCTS) algorithms simulate a
playout of the game

▶ and iteratively build a search tree, adding (at most) one node
in each iteration.

▶ MCTS is parameterized by a tree policy and a default policy.
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