Foundations of Artificial Intelligence

43. Board Games: Stochastic Games

Thomas Keller and Florian Pommerening

University of Basel

May 22, 2023

Board Games: Overview

chapter overview:

- 40. Introduction and State of the Art
- 41. Minimax Search and Evaluation Functions
- 42. Alpha-Beta Search
- 43. Stochastic Games
- 44. Monte-Carlo Tree Search Framework
- 45. Monte-Carlo Tree Search Configurations

Expected Value

Discrete Random Variable

- a random event (like the result of a die roll)
- is described in terms of a random variable X
- with associated domain dom (X)
- and a probability distribution over the domain

Discrete Random Variable

- a random event (like the result of a die roll)
- is described in terms of a random variable X
- with associated domain $\operatorname{dom}(X)$
- and a probability distribution over the domain
- if the number of outcomes of a random event is finite (like here), the random variable is a discrete random variable
- and the probability distribution is given as a probability $P(X=x)$ that the outcome is $x \in \operatorname{dom}(X)$

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks
- your analyst expects these stock price changes:

Bellman Inc. Howard Corp.
+2 with $30 \% \quad+3$ with 40%
+1 with $60 \% \quad \pm 0$ with 10%
± 0 with $10 \% \quad-1$ with 50%
Markov Tec.
+4 with 20%
+2 with 30%
-1 with 50%

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks
- your analyst expects these stock price changes:

Bellman Inc. Howard Corp. +2 with $30 \% \quad+3$ with 40% +1 with $60 \% \quad \pm 0$ with 10% ± 0 with $10 \% \quad-1$ with 50% Markov Tec. +4 with 20% +2 with 30% -1 with 50%
formal model:

- discrete random variables B, H and M
- $\operatorname{dom}(B)=\{2,1,0\}$

$$
\operatorname{dom}(H)=\{3,0,-1\}
$$

$$
\operatorname{dom}(M)=\{4,2,-1\}
$$

- $P(B=2)=0.3 \quad P(H=3)=0.4$

$$
P(B=1)=0.6 \quad P(H=0)=0.1
$$

$$
P(B=0)=0.1 \quad P(H=-1)=0.5
$$

$$
\begin{array}{ll}
P(M=4) & =0.2 \\
P(M=2) & =0.3 \\
P(M=-1) & =0.5
\end{array}
$$

Expected Value

- the expected value $\mathbb{E}[X]$ of a random variable X is a weighted average of its outcomes
- it is computed as the probability-weighted sum of all outcomes $x \in \operatorname{dom}(X)$, i.e.,

$$
\mathbb{E}[X]:=\sum_{x \in \operatorname{dom}(X)} P(X=x) \cdot x
$$

- in stochastic environments, it is rational to deal with uncertainty by optimizing expected values

Expected Value: Example

formal model:
expected gain:

- discrete random variables
B, H and M
- $\operatorname{dom}(B)=\{2,1,0\}$
$\operatorname{dom}(H)=\{3,0,-1\}$
$\operatorname{dom}(M)=\{4,2,-1\}$
- $P(B=2)=0.3$
$P(B=1)=0.6$
$P(B=0)=0.1$
$P(H=3)=0.4 \quad P(M=4)=0.2$
$P(H=0)=0.1 \quad P(M=2)=0.3$
$P(H=-1)=0.5 \quad P(M=-1)=0.5$

Expected Value: Example

formal model:

- discrete random variables B, H and M
- $\operatorname{dom}(B)=\{2,1,0\}$

$$
\operatorname{dom}(H)=\{3,0,-1\}
$$

$$
\operatorname{dom}(M)=\{4,2,-1\}
$$

- $P(B=2)=0.3$

$$
P(B=1)=0.6
$$

$$
P(B=0)=0.1
$$

$$
P(H=3)=0.4 \quad P(M=4)=0.2
$$

$$
P(H=0)=0.1 \quad P(M=2)=0.3
$$

$$
P(H=-1)=0.5 \quad P(M=-1)=0.5
$$

$$
\begin{aligned}
\mathbb{E}[B] & =P(B=2) \cdot 2+P(B=1) \cdot 1+P(B=0) \cdot 0 \\
& =0.3 \cdot 2+0.6 \cdot 1+0.1 \cdot 0=1.2
\end{aligned}
$$

$$
\mathbb{E}[H]=P(H=3) \cdot 3+P(H=0) \cdot 0+P(H=-1) \cdot-1
$$

$$
=0.4 \cdot 3+0.1 \cdot 0+0.5 \cdot-1=0.7
$$

$$
\begin{aligned}
\mathbb{E}[M] & =P(M=4) \cdot 4+P(M=2) \cdot 2+P(M=-1) \cdot-1 \\
& =0.2 \cdot 4+0.3 \cdot 2+0.5 \cdot-1=0.9
\end{aligned}
$$

Expected Value: Example

formal model:

- discrete random variables B, H and M
- $\operatorname{dom}(B)=\{2,1,0\}$

$$
\operatorname{dom}(H)=\{3,0,-1\}
$$

expected gain:

$$
\begin{aligned}
\mathbb{E}[B] & =P(B=2) \cdot 2+P(B=1) \cdot 1+P(B=0) \cdot 0 \\
& =0.3 \cdot 2+0.6 \cdot 1+0.1 \cdot 0=1.2
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[H] & =P(H=3) \cdot 3+P(H=0) \cdot 0+P(H=-1) \cdot-1 \\
& =0.4 \cdot 3+0.1 \cdot 0+0.5 \cdot-1=0.7
\end{aligned}
$$

$$
\operatorname{dom}(M)=\{4,2,-1\}
$$

$$
\begin{aligned}
\mathbb{E}[M] & =P(M=4) \cdot 4+P(M=2) \cdot 2+P(M=-1) \cdot-1 \\
& =0.2 \cdot 4+0.3 \cdot 2+0.5 \cdot-1=0.9
\end{aligned}
$$

$$
P(B=1)=0.6
$$

$$
P(B=0)=0.1
$$

rational decision:

$$
P(H=3)=0.4 \quad P(M=4)=0.2
$$

$$
P(H=0)=0.1 \quad P(M=2)=0.3
$$

$$
P(H=-1)=0.5 \quad P(M=-1)=0.5
$$

Expected Value: Example

formal model:

- discrete random variables B, H and M
- $\operatorname{dom}(B)=\{2,1,0\}$

$$
\operatorname{dom}(H)=\{3,0,-1\}
$$

expected gain:

$$
\begin{aligned}
\mathbb{E}[B] & =P(B=2) \cdot 2+P(B=1) \cdot 1+P(B=0) \cdot 0 \\
& =0.3 \cdot 2+0.6 \cdot 1+0.1 \cdot 0=1.2
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[H] & =P(H=3) \cdot 3+P(H=0) \cdot 0+P(H=-1) \cdot-1 \\
& =0.4 \cdot 3+0.1 \cdot 0+0.5 \cdot-1=0.7
\end{aligned}
$$

$$
\operatorname{dom}(M)=\{4,2,-1\}
$$

$$
\begin{aligned}
\mathbb{E}[M] & =P(M=4) \cdot 4+P(M=2) \cdot 2+P(M=-1) \cdot-1 \\
& =0.2 \cdot 4+0.3 \cdot 2+0.5 \cdot-1=0.9
\end{aligned}
$$

$$
P(B=1)=0.6
$$

$$
P(B=0)=0.1
$$

rational decision: buy Bellman Inc.

$$
P(H=3)=0.4 \quad P(M=4)=0.2
$$

$$
P(H=0)=0.1 \quad P(M=2)=0.3
$$

$$
P(H=-1)=0.5 \quad P(M=-1)=0.5
$$

Stochastic Games

Definition

Definition (stochastic game)

A stochastic game is a
7-tuple $\mathcal{S}=\left\langle S, A, T, s_{l}, S_{\star}\right.$, utility, player \rangle with

- finite set of positions S
- finite set of moves A
- transition function $T: S \times A \times S \mapsto[0,1]$ that is well-defined for $\langle s, a\rangle$ (see below)
- initial position $s_{I} \in S$
- set of terminal positions $S_{\star} \subseteq S$
- utility function utility : $S_{\star} \rightarrow \mathbb{R}$
- player function player : $S \backslash S_{\star} \rightarrow\{\max , \min \}$

A transition function is well-defined for $\langle s, a\rangle$ if $\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)=1$ (then a is applicable in s) or $\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)=0$.

Reminder: Bounded Inc-and-square Game

informal description:

- Players alternatingly apply a
- increment-mod10 (inc) or
- square-mod10 (sqr) move
- on the natural numbers from 0 to 9
- starting from the number 1 ;
- if the game reaches the number 6 or 7
- or after a fixed number of moves n
- max obtains utility r (min: $-r$) where x is the current number.
formal model:
- $S=\left\{s_{0}^{k}, s_{1}^{k}, \ldots, s_{9}^{k} \mid 0 \leq k \leq n\right\}$
- $A=\{i n c, s q r\}$
- for $0 \leq i \leq 9$ and $0 \leq k \leq n$:
- $\left\langle s_{i}^{k}, i n c, s_{(i+1)}^{k+1} \bmod 10\right\rangle \in T$
- $\left\langle s_{i}^{k}\right.$, sqr, $\left.s_{i 2}^{k+1} \bmod 10\right\rangle \in T$
- $s_{l}=s_{1}^{0}$
- $S_{\star}=\left\{s_{6}^{k}, s_{7}^{k} \mid 0 \leq k \leq n\right\} \cup$

$$
\left\{s_{i}^{n} \mid 0 \leq i \leq 9\right\}
$$

- $\operatorname{utility}\left(s_{i}^{k}\right)=i$ for all $s_{i}^{k} \in S_{\star}$
- $\operatorname{player}\left(s_{i}^{k}\right)=$ max if k even and $\operatorname{player}\left(s_{i}^{k}\right)=\min$ otherwise

Example: Stochastic Inc-and-square Game

informal description:

- rules like bounded inc-and-square game
- except applying squaremod10 move in state s
- results with probability $\frac{s}{10}$ in $\left(s^{2} \bmod 10\right)$
- and otherwise in ((2.s) mod 10)
formal model:
- $S=\left\{s_{0}^{k}, s_{1}^{k}, \ldots, s_{9}^{k} \mid 0 \leq k \leq n\right\}$
- $A=\{i n c, s q r\}$
- for $0 \leq i \leq 9$ and $0 \leq k<n$:
- $T\left(s_{i}^{k}, i n c, s_{(i+1) \bmod 10}^{k+1}\right)=1$
- $T\left(s_{i}^{k}, s q r, s_{i 2}^{k+1} \bmod 10\right)=\frac{s}{10}$
- $T\left(s_{i}^{k}, s q r, s_{(2 \cdot i) \bmod 10}^{k+1}\right)=\frac{10-s}{10}$
$\left(T\left(s, a, s^{\prime}\right)=0\right.$ for all other $\left.\left\langle s, a, s^{\prime}\right\rangle\right)$
- $s_{I}=s_{1}^{0}$
- $S_{\star}=\left\{s_{6}^{k}, s_{7}^{k} \mid 0 \leq k \leq n\right\} \cup\left\{s_{i}^{n} \mid 0 \leq i \leq 9\right\}$
- utility $\left(s_{i}^{k}\right)=i$ for all $s_{i}^{k} \in S_{\star}$
- player $\left(s_{i}^{k}\right)=\max$ if k even and $\operatorname{player}\left(s_{i}^{k}\right)=\min$ otherwise

Expectiminimax

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes from below to above through the tree:
- min's turn: utility value is minimum of utility values of children
- max's turn: utility value is maximum of utility values of children
- chance: utility value is probabilityweighted sum of utility values of children
- policy: action that maximizes utility value

Idea and Example

Idea and Example

Discussion

- expectiminimax is the simplest (decent) search algorithm for stochastic games
- yields optimal policy* (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- max obtains at least the state value computed for the root in expectation, no matter how min plays
- if min plays perfectly, max obtains exactly the computed value in expectation
- the reward for max that is actually obtained may be a higher or lower than the state value computed for the root, independently of how min plays
(*) for finite trees; otherwise things get more complicated

Summary

Summary

- Stochastic games are board games with an additional element of chance.
- Expectiminimax is a minimax variant for stochastic games with identical behavior in max and min nodes.
- In chance nodes, it propagates the probability-weighted sum of all successors.
- Expectiminimax has similar guarantess as minimax but in expectation.

