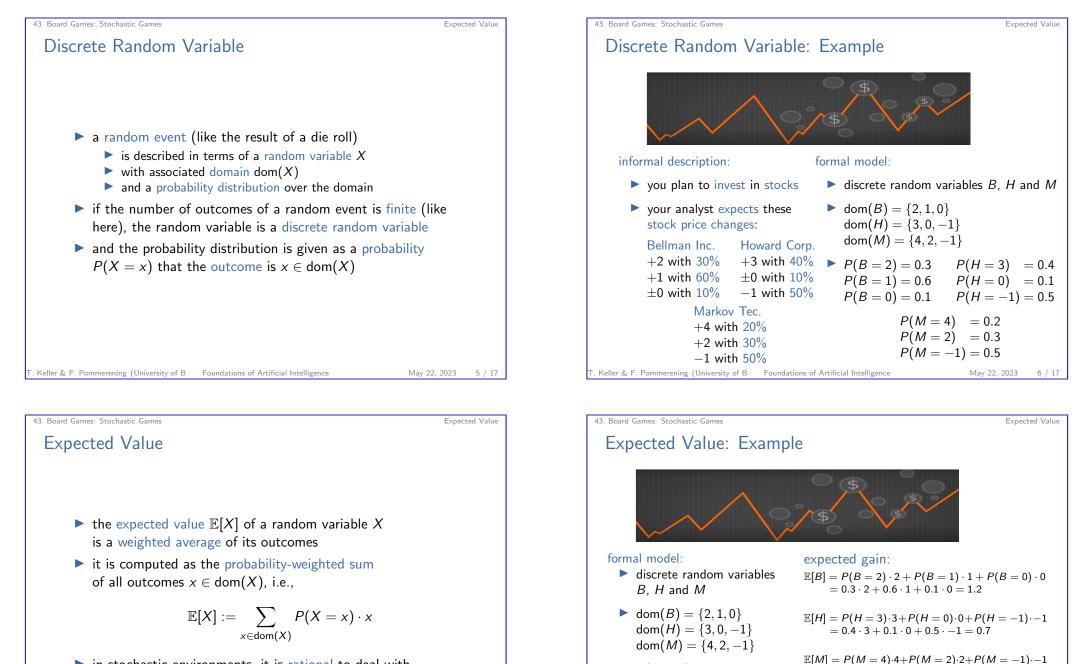


Foundations of Artificial Intelligence May 22, 2023 — 43. Board Games: Stochastic Games		
43.1 Expected Value		
43.2 Stochastic Games		
43.3 Expectiminimax		
43.4 Summary		
F. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence	May 22, 2023	2 / 17

43. Board Games: Stochastic Games

43.1 Expected Value

Expected Value



in stochastic environments, it is rational to deal with uncertainty by optimizing expected values

P(B = 2) = 0.3

P(B = 1) = 0.6P(B = 0) = 0.1

P(H = 3) = 0.4

P(H = 0) = 0.1

P(H = -1) = 0.5

Keller & F. Pommerening (University of B

 $= 0.2 \cdot 4 + 0.3 \cdot 2 + 0.5 \cdot -1 = 0.9$

rational decision: buy Bellman Inc.

P(M = 4) = 0.2

P(M = 2) = 0.3

P(M = -1) = 0.5

Foundations of Artificial Intelligence

Stochastic Game

43.2 Stochastic Games

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

43. Board Games: Stochastic Games Reminder: Bounded Inc-and-square Game informal description: formal model: Players alternatingly apply a ▶ $S = \{s_0^k, s_1^k, \dots, s_0^k \mid 0 < k < n\}$ ▶ increment-mod10 (inc) or \blacktriangleright $A = \{inc. sar\}$ square-mod10 (sqr) move ▶ for 0 < i < 9 and 0 < k < n: on the natural numbers from 0 to 9 $\begin{array}{l} \blacktriangleright \quad \langle s_i^k, \mathit{inc}, s_{(i+1) \mod 10}^{k+1} \rangle \in T \\ \blacktriangleright \quad \langle s_i^k, \mathit{sqr}, s_{i^2 \mod 10}^{k+1} \rangle \in T \end{array}$ starting from the number 1; ▶ if the game reaches the number 6 or 7 $rac{1}{r} s_{l} = s_{1}^{0}$ or after a fixed number of moves n ► $S_{\star} = \{s_6^k, s_7^k \mid 0 \le k \le n\} \cup \{s_i^n \mid 0 \le i \le 9\}$ \blacktriangleright max obtains utility r (min: -r) where x is the current number. • $utility(s_i^k) = i$ for all $s_i^k \in S_*$ \blacktriangleright player(s_i^k) = max if k even and $player(s_i^k) = min$ otherwise

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 22, 2023

9 / 17

Definition

Definition (stochastic game)

A stochastic game is a

7-tuple $S = \langle S, A, T, s_l, S_{\star}, utility, player \rangle$ with

- ► finite set of positions *S*
- ▶ finite set of moves A
- ▶ transition function $T : S \times A \times S \mapsto [0, 1]$ that is well-defined for $\langle s, a \rangle$ (see below)
- ▶ initial position $s_i \in S$
- ▶ set of terminal positions $S_+ \subset S$
- ▶ utility function *utility* : $S_+ \to \mathbb{R}$
- ▶ player function player : $S \setminus S_* \rightarrow \{max, min\}$

A transition function is well-defined for (s, a) if $\sum_{s' \in S} T(s, a, s') = 1$ (then a is applicable in s) or $\sum_{s' \in S} T(s, a, s') = 0$. May 22, 2023 10 / 17

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

```
Example: Stochastic Inc-and-square Game
informal description:
                                              formal model:
                                                 ► S = \{s_0^k, s_1^k, \dots, s_0^k \mid 0 \le k \le n\}
       inc-and-square game
                                                  \blacktriangleright A = \{inc, sar\}
                                                  ▶ for 0 < i < 9 and 0 < k < n:
       mod10 move in state s
                                                         ► T(s_i^k, inc, s_{(i+1) \mod 10}^{k+1}) = 1
                                                         T(s_i^k, sqr, s_{i^2 \mod 10}^{k+1}) = \frac{s}{10}

T(s_i^k, sqr, s_{i^2 \mod 10}^{k+1}) = \frac{10-s}{10}
        \frac{s}{10} in (s^2 \mod 10)
                                                      (T(s, a, s') = 0 \text{ for all other } \langle s, a, s' \rangle)
       ((2 \cdot s) \mod 10)
                                                  \blacktriangleright s_l = s_1^0
                                                  ▶ S_{\star} = \{s_6^k, s_7^k \mid 0 \le k \le n\} \cup \{s_i^n \mid 0 \le i \le 9\}
                                                  • utility(s_i^k) = i for all s_i^k \in S_+
                                                  \blacktriangleright player(s_i^k) = max if k even and
                                                      player(s_i^k) = min otherwise
```

May 22, 2023 12 / 17

rules like bounded

- except applying square-
- results with probability
- and otherwise in

43. Board Games: Stochastic Games

Expectiminimax

43.3 Expectiminimax

F. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

43. Board Games: Stochastic Games

Discussion

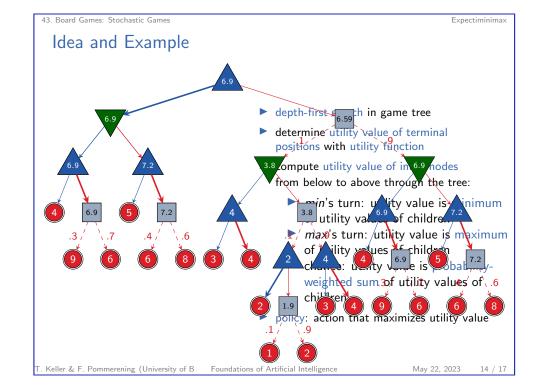
- expectiminimax is the simplest (decent) search algorithm for stochastic games
- yields optimal policy* (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- max obtains at least the state value computed for the root in expectation, no matter how min plays
- if min plays perfectly, max obtains exactly the computed value in expectation
- the reward for max that is actually obtained may be a higher or lower than the state value computed for the root, independently of how min plays

(*) for finite trees; otherwise things get more complicated

May 22, 2023

13 / 17

Expectiminimax



43. Board Games: Stochastic Games Summary

43. Board Games: Stochastic Games	Summary
Summary	
Stochastic games are board games	
with an additional element of chance.	
Expectiminimax is a minimax variant for stochastic games	
with identical behavior in <i>max</i> and <i>min</i> nodes.	
In chance nodes, it propagates the	
probability-weighted sum of all successors.	
Expectiminimax has similar guarantess as minimax	
but in expectation.	
. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence May 22, 2023	17 / 17