Foundations of Artificial Intelligence
42. Board Games: Alpha-Beta Search

Thomas Keller and Florian Pommerening
University of Basel

May 22, 2023

Board Games: Overview

chapter overview:

e 40.
e 41.
e 42,
e 43.
e 44,
e 45,

Introduction and State of the Art
Minimax Search and Evaluation Functions
Alpha-Beta Search

Stochastic Games

Monte-Carlo Tree Search Framework

Monte-Carlo Tree Search Configurations

What if the size of the game tree is too big for minimax?

~ Heuristic Alpha-Beta Search

Alpha-Beta Search
0000000

Alpha-Beta Search

Alpha-Beta Search
0e00000

Can We Save Search Effort?

5
inc sqr
5} 3
inc sqr inc sar
D) 6 5 3
inc sqr sqr inc inc sqr inc sqr
5 0 @ 5 4 5 3 1
sqr inc sqr sqrinc sqrinc sqrinc sqrinc sqr

0000 0000000000

Alpha-Beta Search

0O@00000

Can We Save Search Effort?

What do we know about the utility
value of s7 in this situation?

Alpha-Beta Search
0e00000

Can We Save Search Effort?

And about the utility value of s17?

What do we know about the utility
value of s7 in this situation?
it's 6 or higher

Alpha-Beta Search
0e00000

Can We Save Search Effort?

And about the utility value of s17?
it's 5 (independently of the
missing subtree below s2)

inc

What do we know about the utility
value of s7 in this situation?
it's 6 or higher

Alpha-Beta Search
0e00000

Can We Save Search Effort?

And about the utility value of s17?
it's 5 (independently of the
missing subtree below s2)

inc

What do we know about the utility
value of s7 in this situation?
it's 6 or higher

~~ we don't have to look at this

Alpha-Beta Search
[e]e] lelelele]

Idea

idea: use two values a and 8 during minimax search such that
@ « is known lower bound on utility of max and

@ [is known upper bound on utility of min

Alpha-Beta Search
[e]e] lelelele]

Idea

idea: use two values a and 8 during minimax search such that
@ « is known lower bound on utility of max and

@ [is known upper bound on utility of min

it holds for every recursive call that a subtree

@ is not interesting if its utility value is < «
because max will never enter it when playing optimally

@ is not interesting if its utility value is > (8
because min will never enter it when playing optimally

@ rooted at a max node is pruned if utility >

@ rooted at a min node is pruned if utility < «

Alpha-Beta Search
[e]e]e] lelele]

Alpha-Beta Search: Pseudo Code

@ algorithm skeleton the same as minimax

@ function signature extended by two variables « and 3

function alpha-beta-main(p)

(v, move) := alpha-beta(p, —oo, +00)
return move

Alpha-Beta Search
0000e00

Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, o, 5)

if p is terminal position:
return (utility(p), none)
initialize v and best_move [as in minimax]
for each (move, p’) € succ(p):
(v', best_move') := alpha-beta(p’, a, B)
update v and best_move [as in minimax]
if player(p) = max:
if v>p:
return (v, none)
a = max{a, v}
if player(p) = min:

if v<a:
return (v, none)
B = min{j, v}

return (v, best_move)

Alpha-Beta Search

00000e0
Example
—00 “+oo
@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search

00000e0
Example
—00 “+oo
—00 +oo
@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
00000e0

Example

@ « is lower bound on utility of max @ (3 is upper bound on utility of min

@ a max subtree is pruned if utility > 8 @ a min subtree is pruned if utility < «

Alpha-Beta Search
000000e

Discussion

What do the utility values express?

Alpha-Beta Search
000000e

Discussion

some utility values are

some utility values like in minimax— 483 lower or upper bounds

inc

!

some utility
values missing

What do the utility values express?

Alpha-Beta Search
000000e

Discussion

What does this mean for the computed policy?

Alpha-Beta Search

O00000e

Discussion

What does this mean for the computed policy?

@ only partial @ optimal in positions reachable under optimal play

@ need to take earliest move in case of ties

Move Ordering
00000

Move Ordering

Move Ordering
[o] lelele]e]

How Much Effort Did We Save?

Move Ordering
[o] lelele]e]

How Much Effort Did We Save?

Move Ordering
[e]e] lele]e]

Have We Been Lucky?

5
sar
3 5
inc sqr inc sqr
5 6 5 3
inc sqr sqr inc sqr inc inc
5 0 @ 5 \ / 5 3 1

sqr inc sqr inc sqr inc sqr

00060 0000000000

if successors are considered in reverse order, we prune only a few positions

Move Ordering
[e]e]e] le]e]

Move Ordering

idea: first consider the successors that are likely to be best
@ domain-specific ordering function
e.g. chess: captures < threats < forward moves < backward moves
@ dynamic move-ordering

o first try moves that have been good in the past
e e.g., in iterative deepening search:
best moves from previous iteration

Move Ordering
O000e0

How Much Do We Gain with Alpha-Beta Pruning?

assumption: uniform game tree, depth d, branching factor b > 2;
max and min positions alternating

@ perfect move ordering

@ best move in every position is considered first
(this cannot be done in practice)
o effort reduced from O(b?) (minimax) to O(b%/?)
o doubles the search depth that can be achieved in same time

@ random move ordering
o effort still reduced to O(b3?/*) (for moderate b)

in practice, it is often possible to get close to the optimum

Move Ordering
O0000e

Heuristic Alpha-Beta Search

@ combines evaluation function and alpha-beta search
o often uses additional techniques, e.g.

@ quiescence search

transposition tables

forward pruning

specialised sub-procedure for critical parts of the game
(e.g., endgame database in chess)

~> reaches expert level of play in chess

Summary

Summary
oce

Summary

alpha-beta search

@ stores which utility both players can force
somewhere else in the game tree

@ exploits this information to avoid unnecessary computations
@ can have significantly lower search effort than minimax

@ best case: search twice as deep in the same time

	Alpha-Beta Search
	

	Move Ordering
	

	Summary
	

