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Board Games: Overview

chapter overview:

▶ 40. Introduction and State of the Art

▶ 41. Minimax Search and Evaluation Functions

▶ 42. Alpha-Beta Search

▶ 43. Stochastic Games

▶ 44. Monte-Carlo Tree Search Framework

▶ 45. Monte-Carlo Tree Search Configurations
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41.1 Minimax Search
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Example: Tic-Tac-Toe

consider it’s the turn of player :

If the utility for win/draw/lose for player is +1/0/-1,
what is an appropriate utility value for the depicted position?
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Example: Tic-Tac-Toe

consider it’s the turn of player :

And what about this one?

what is an appropriate utility value for the depicted position?
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Idea and Example

▶ depth-first search in game tree

▶ determine utility value of terminal
position with utility function

▶ strategy: action that maximizes
utility value (minimax decision)

▶ compute utility value of inner nodes

from below to above through the tree:
▶ min’s turn: utility value is minimum of

utility values of children
▶ max ’s turn: utility value is maximum of

utility values of children
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Minimax: Pseudo-Code

function minimax(p)

if p is terminal position:
return ⟨utility(p),none⟩

best move := none
if player(p) = max:

v := −∞
else:

v := ∞
for each ⟨move, p′⟩ ∈ succ(p):

⟨v ′, best move′⟩ := minimax(p′)
if (player(p) = max and v ′ > v) or

if

(player(p) = min and v ′ < v):
v := v ′

best move := move
return ⟨v , best move⟩
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Discussion

▶ minimax is the simplest (decent) search algorithm for games

▶ yields optimal strategy∗ (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

▶ max obtains at least the utility value computed for the root,
no matter how min plays

▶ if min plays perfectly, max obtains exactly the computed value

(*) for finite trees; otherwise things get more complicated
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Limitations of Minimax

What if the size of the game tree is too big for minimax?

⇝ Heuristic Alpha-Beta Search
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41.2 Evaluation Functions
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Evaluation Functions

Definition (evaluation function)

Let S be a game with set of positions S .
An evaluation function for S is a function

h : S → R

which assigns a real-valued number to each position s ∈ S .

Looks familiar? Commonalities? Differences?
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Intuition

▶ problem: game tree too big

▶ idea: search only up to predefined depth

▶ depth reached: estimate the utility value according to
heuristic criteria (as if terminal position had been reached)

accuracy of evaluation function is crucial

▶ high values should relate to high “winning chances”

▶ at the same time, the evaluation should be
efficiently computable in order to be able to search deeply
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Example: Connect Four

⇕ 3/2 0/1 1/3 1/0 0/1 3/1 3/3 ⇕
⇔

0/0

0/0

0/0

4/4

4/4

4/4

⇔
⇕ , ⇕ accordingly

evalution function: difference of number of possible lines of four
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General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

h(s) = w0 + w1f1(s) + w2f2(s) + · · ·+ wnfn(s),

where wi are weights and fi are features.

▶ assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

▶ features are (usually) provided by human experts

▶ weights provided by human experts or learned automatically

example: evaluation function in chess

feature f playerp f playerk f playerb f playerr f playerq

no. of pieces pawn knight bishop rook queen
weight for max 1 3 3 5 9
weight for min −1 −3 −3 −5 −9

often additional features based on pawn structure, mobility, . . .

⇝ h(s) = f max
p (s) + 3f max

k (s) + 3f max
b (s) + 5f max

r (s) + 9f max
q (s)

−f min
p (s)− 3f min

k (s)− 3f min
b (s)− 5f min

r (s)− 9f min
q (s)
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General Method: State Value Networks

alternative: evaluation functions based on neural networks

▶ value network takes position features as input
(usually provided by human experts)

▶ and outputs utility value prediction

▶ weights of network learned automatically

example: value network of Alpha Go

▶ start with policy network trained on human expert games

▶ train sequence of policy networks by self-play against earlier version

▶ final step: convert to utility value network
(slightly worse informed but much faster)

David Silver et al., Mastering the game of Go with deep neural networks and tree search (Nature, 2016)
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How Deep Shall We Search?

▶ objective: search as deeply as possible within a given time

▶ problem: search time difficult to predict
▶ solution: iterative deepening

▶ sequence of searches of increasing depth
▶ time expires: return result of previously finished search
▶ overhead acceptable (see ai12 lecture)

▶ refinement: search deeper in “turbulent” states
(i.e., with strong fluctuations of the evaluation function)
⇝ quiescence search
▶ example chess: deepen the search after capturing moves
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41.3 Summary
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Summary

▶ Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(bd)
(branching factor b, search depth d).

▶ In practice, the search depth must be bounded
⇝ apply evaluation functions.
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