Foundations of Artificial Intelligence

39. Automated Planning: The LM-cut Heuristic

Thomas Keller and Florian Pommerening

University of Basel
May 15, 2023

Automated Planning: Overview

Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.-36. Planning Heuristics: Delete Relaxation
- 37 Planning Heuristics: Abstraction
- 38.-39. Planning Heuristics: Landmarks
- 38. Landmarks
- 39. The LM-cut Heuristic

Formalism and Example

- As in the previous chapter, we consider delete-free planning tasks in normal form.
- We continue with the example from the previous chapter:

Example

actions:

- $a_{1}=i \xrightarrow{3} x, y$
- $a_{2}=i \xrightarrow{4} x, z$
- $a_{3}=i \xrightarrow{5} y, z$
- $a_{4}=x, y, z \xrightarrow{0} g$
landmark examples:
- $A=\left\{a_{4}\right\}(\operatorname{cost}=0)$
- $B=\left\{a_{1}, a_{2}\right\}(\operatorname{cost}=3)$
- $C=\left\{a_{1}, a_{3}\right\}(\operatorname{cost}=3)$
- $D=\left\{a_{2}, a_{3}\right\}(\operatorname{cost}=4)$

Finding Landmarks

Justification Graphs

Definition (precondition choice function)

A precondition choice function (pcf) $P: A \rightarrow V$ maps every action to one of its preconditions.

Definition (justification graph)

The justification graph for pcf P is a directed graph with labeled arcs.

- vertices: the variables V
- arcs: $P(a) \xrightarrow{a} e$ for every action a, every effect $e \in \operatorname{add}(a)$

Example: Justification Graph

Example

$$
\text { pcf } P: P\left(a_{1}\right)=P\left(a_{2}\right)=P\left(a_{3}\right)=i, P\left(a_{4}\right)=y
$$

$$
\begin{aligned}
a_{1} & =i \xrightarrow{3} x, y \\
a_{2} & =i \stackrel{4}{\rightarrow} x, z \\
a_{3} & =i \stackrel{5}{\rightarrow} y, z \\
a_{4} & =x, y, z \xrightarrow{0} g
\end{aligned}
$$

Cuts

Definition (cut)

A cut in a justification graph is a subset C of its arcs such that all paths from i to g contain an arc in C.

Cuts

Definition (cut)

A cut in a justification graph is a subset C of its arcs such that all paths from i to g contain an arc in C.

Proposition (cuts are landmarks)

Let C be a cut in a justification graph for an arbitrary pcf.
Then the arc labels for C form a landmark. proof idea:

- Consider the problem where all preconditions not picked by the pcf are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example: Cuts in Justification Graphs

Example

landmark $A=\left\{a_{4}\right\}($ cost $=0)$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} x, y \\
& a_{2}=i \xrightarrow{\rightarrow} x, z \\
& a_{3}=i \xrightarrow[\rightarrow]{\rightarrow} y, z \\
& a_{4}=x, y, z \xrightarrow{0} g
\end{aligned}
$$

Example: Cuts in Justification Graphs

Example

landmark $B=\left\{a_{1}, a_{2}\right\}(\operatorname{cost}=3)$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} x, y \\
& a_{2}=i \xrightarrow{\rightarrow} x, z \\
& a_{3}=i \xrightarrow{5} y, z \\
& a_{4}=x, y, z \xrightarrow{0} g
\end{aligned}
$$

Example: Cuts in Justification Graphs

Example

$$
\text { landmark } \left.C=\left\{a_{1}, a_{3}\right\} \text { (cost }=3\right)
$$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} x, y \\
& a_{2}=i \xrightarrow{\rightarrow} x, z \\
& a_{3}=i \xrightarrow{5} y, z \\
& a_{4}=x, y, z \xrightarrow{0} g
\end{aligned}
$$

Example: Cuts in Justification Graphs

Example

landmark $D=\left\{a_{2}, a_{3}\right\}($ cost $=4)$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} x, y \\
& a_{2}=i \xrightarrow{\rightarrow} x, z \\
& a_{3}=i \xrightarrow[\rightarrow]{\boldsymbol{5}} y, z \\
& a_{4}=x, y, z \xrightarrow{0} g
\end{aligned}
$$

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task. Then $h^{\mathrm{MHS}}(I)=h^{+}(I)$ for \mathcal{L}.
\rightsquigarrow hitting set heuristic for \mathcal{L} is perfect.
proof idea:

- Show $1: 1$ correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

The LM-Cut Heuristic

LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- For planning tasks with uniform costs (i.e., $\operatorname{cost}(a)=1$ for all actions) it matches $h^{\mathrm{MHS}-\mathrm{LP}}$ on the same set of landmarks.
\rightsquigarrow one of the best admissible planning heuristics

LM-Cut Heuristic

$h^{\text {LM-cut }}$ (Helmert \& Domshlak, 2009)

Initialize $h^{\text {LM-cut }}(I):=0$. Then iterate:
(1) Compute $h^{\text {max }}$ values of the variables. Stop if $h^{\text {max }}(g)=0$.
(2) Compute justification graph G for a pcf that chooses preconditions with maximal $h^{\max }$ value.
(Requires a tie-breaking policy.)
(3) Determine the goal zone V_{g} of G that consists of all vertices that have a zero-cost path to g.
(9) Compute the cut L that contains the labels of all $\operatorname{arcs} v \xrightarrow{a} v^{\prime}$ such that $v \notin V_{g}, v^{\prime} \in V_{g}$ and v can be reached from i without traversing a vertex in V_{g}.
It is guaranteed that $\operatorname{cost}(L)>0$.
(5) Increase $h^{\text {LM-cut }}(I)$ by $\operatorname{cost}(L)$.
(0) Decrease $\operatorname{cost}(a)$ by $\operatorname{cost}(L)$ for all $a \in L$.

Example: Computation of LM-Cut

Example

$$
\text { round 1: } P\left(a_{4}\right)=c \rightsquigarrow L=\left\{a_{2}, a_{3}\right\}[4]
$$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} a, b \\
& a_{2}=i \xrightarrow{4} a, c \\
& a_{3}=i \stackrel{5}{\rightarrow} b, c \\
& a_{4}=a, b, c \xrightarrow{0} g
\end{aligned}
$$

Example: Computation of LM-Cut

Example

$$
\text { round 1: } P\left(a_{4}\right)=c \rightsquigarrow L=\left\{a_{2}, a_{3}\right\}[4] \rightsquigarrow h^{\text {LM-cut }}(I):=4
$$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} a, b \\
& a_{2}=i \xrightarrow{\rightarrow} a, c \\
& a_{3}=i \xrightarrow{\rightarrow} b, c \\
& a_{4}=a, b, c \xrightarrow{0} g
\end{aligned}
$$

Example: Computation of LM-Cut

Example

$$
\text { round 2: } P\left(a_{4}\right)=b \rightsquigarrow L=\left\{a_{1}, a_{3}\right\}[1]
$$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{3} a, b \\
& a_{2}=i \xrightarrow{\rightarrow} a, c \\
& a_{3}=i \xrightarrow{\rightarrow} b, c \\
& a_{4}=a, b, c \xrightarrow{\rightarrow} g
\end{aligned}
$$

Example: Computation of LM-Cut

Example

$$
\text { round 2: } P\left(a_{4}\right)=b \rightsquigarrow L=\left\{a_{1}, a_{3}\right\}[1] \rightsquigarrow h^{\mathrm{LM}-\mathrm{cut}}(I):=4+1=5
$$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{2} a, b \\
& a_{2}=i \xrightarrow{\rightarrow} a, c \\
& a_{3}=i \xrightarrow{\rightarrow} b, c \\
& a_{4}=a, b, c \xrightarrow{0} g
\end{aligned}
$$

Example: Computation of LM-Cut

Example

round 3: $h^{\max }(g)=0 \rightsquigarrow$ done $!\rightsquigarrow h^{\text {LM-cut }}(I)=5$

$$
\begin{aligned}
& a_{1}=i \xrightarrow{2} a, b \\
& a_{2}=i \xrightarrow{\rightarrow} a, c \\
& a_{3}=i \xrightarrow{\rightarrow} b, c \\
& a_{4}=a, b, c \xrightarrow{0} g
\end{aligned}
$$

Summary

Summary

- Cuts in justification graphs are a general method to find landmarks.
- Hitting sets over all cut landmarks yield a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.

