Foundations of Artificial Intelligence 39. Automated Planning: The LM-cut Heuristic

Thomas Keller and Florian Pommerening

University of Basel

May 15, 2023

Automated Planning: Overview

Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.-36. Planning Heuristics: Delete Relaxation
- 37 Planning Heuristics: Abstraction
- 38.-39. Planning Heuristics: Landmarks
 - 38. Landmarks
 - 39. The LM-cut Heuristic

Formalism and Example

- As in the previous chapter, we consider delete-free planning tasks in normal form.
- We continue with the example from the previous chapter:

Example	
actions:	landmark examples:
• $a_1 = i \xrightarrow{3} x, y$	• $A = \{a_4\}$ (cost = 0)
• $a_2 = i \xrightarrow{4} x, z$	• $B = \{a_1, a_2\}$ (cost = 3)
• $a_3 = i \xrightarrow{5} y, z$	• $C = \{a_1, a_3\}$ (cost = 3)
• $a_4 = x, y, z \xrightarrow{0} g$	• $D = \{a_2, a_3\}$ (cost = 4)

Finding Landmarks

Justification Graphs

Definition (precondition choice function)

A precondition choice function (pcf) $P : A \rightarrow V$ maps every action to one of its preconditions.

Definition (justification graph)

The justification graph for pcf P is a directed graph with labeled arcs.

- vertices: the variables V
- arcs: $P(a) \xrightarrow{a} e$ for every action *a*, every effect $e \in add(a)$

The LM-Cut Heuristic

Summary 00

Example: Justification Graph

pcf P:
$$P(a_1) = P(a_2) = P(a_3) = i$$
, $P(a_4) = y$

Cuts

Definition (cut)

A cut in a justification graph is a subset C of its arcs such that all paths from i to g contain an arc in C.

Cuts

Definition (cut)

A cut in a justification graph is a subset C of its arcs such that all paths from i to g contain an arc in C.

Proposition (cuts are landmarks)

Let C be a cut in a justification graph for an arbitrary pcf.

Then the arc labels for C form a landmark.

proof idea:

- Consider the problem where all preconditions not picked by the pcf are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example

landmark $A = \{a_4\}$ (cost = 0)

Example

landmark $B = \{a_1, a_2\}$ (cost = 3)

Example

landmark $C = \{a_1, a_3\}$ (cost = 3)

Example

landmark $D = \{a_2, a_3\}$ (cost = 4)

Summary 00

Power of Cuts in Justification Graphs

• Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task. Then $h^{MHS}(I) = h^+(I)$ for \mathcal{L} .

 \rightsquigarrow hitting set heuristic for $\mathcal L$ is perfect.

proof idea:

• Show 1:1 correspondence of hitting sets *H* for *L* and plans, i.e., each hitting set for *L* corresponds to a plan, and vice versa.

The LM-Cut Heuristic

LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- For planning tasks with uniform costs (i.e., cost(a) = 1 for all actions) it matches $h^{\text{MHS-LP}}$ on the same set of landmarks.
- \rightsquigarrow one of the best admissible planning heuristics

LM-Cut Heuristic

h^{LM-cut} (Helmert & Domshlak, 2009)

Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- Compute h^{\max} values of the variables. Stop if $h^{\max}(g) = 0$.
- Compute justification graph G for a pcf that chooses preconditions with maximal h^{max} value. (Requires a tie-breaking policy.)
- Otermine the goal zone V_g of G that consists of all vertices that have a zero-cost path to g.

Compute the cut L that contains the labels of all arcs v → v' such that v ∉ V_g, v' ∈ V_g and v can be reached from i without traversing a vertex in V_g. It is guaranteed that cost(L) > 0.

- **Increase** $h^{\text{LM-cut}}(I)$ by cost(L).
- Decrease cost(a) by cost(L) for all $a \in L$.

The LM-Cut Heuristic 000●

Summary 00

Example: Computation of LM-Cut

Summary

Summary

• Cuts in justification graphs

are a general method to find landmarks.

- Hitting sets over all cut landmarks yield a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.