Foundations of Artificial Intelligence
37. Automated Planning: Abstraction

Thomas Keller and Florian Pommerening
University of Basel

May 10, 2023

Automated Planning: Overview

Chapter overview: automated planning

33. Introduction

34. Planning Formalisms

35.-36. Planning Heuristics: Delete Relaxation
37. Planning Heuristics: Abstraction

38.—39. Planning Heuristics: Landmarks

Planning Heuristics

We consider three basic ideas for general heuristics:
@ Delete Relaxation
@ Abstraction ~~ this chapter

@ Landmarks

Planning Heuristics

We consider three basic ideas for general heuristics:
@ Delete Relaxation
@ Abstraction ~~ this chapter

@ Landmarks

Abstraction: ldea

Estimate solution costs by considering a smaller planning task.

SAST
00000

SAS™

SAS™
0@0000

SAS™ Encoding

@ in this chapter: SAS™ encoding
instead of STRIPS (see Chapter 34)

o difference: state variables v not binary,
but with finite domain dom(v)

@ accordingly, preconditions, effects, goals
specified as partial assignments

@ everything else equal to STRIPS

(In practice, planning systems convert automatically
between STRIPS and SAS™.)

SAST ses Summar
00000 © o 00

SAS™ Planning Task

Definition (SAS™ planning task)
A SAS™ planning task is a 5-tuple 1 = (V,dom, /, G, A)
with the following components:
e V: finite set of state variables
@ dom: domain; dom(v) finite and non-empty for all v € V
e states: total assignments for V' according to dom
@ /: the initial state (state = total assignment)
e G: goals (partial assignment)

@ A: finite set of actions a with

o pre(a): its preconditions (partial assignment)
o eff(a): its effects (partial assignment)
o cost(a) € Ng: its cost

SAST
[e]e]e] le]e]

State Space of SAS™ Planning Task

Definition (state space induced by SAS™ planning task)

Let M= (V,dom, I, G, A) be a SAS™ planning task.
Then I induces the state space S(M) = (S, A, cost, T, so, Si):

set of states: total assignments of V according to dom
actions: actions A defined as in 1
action costs: cost as defined in I1

transitions: s = s’ for states s, s’ and action a iff

o pre(a) complies with s (precondition satisfied)
o s’ complies with eff(a) for all variables mentioned in eff;
complies with s for all other variables (effects are applied)

initial state: sp =/

goal states: s € 5, for state s iff G complies with s

SAST b: ’a ases Summar
000000 00 o

Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks)
Consider the SAS™ planning task (V,dom, I, G, A) with:

o V= {p7 ta, tB}

dom(p) = {L,R,A,B} and dom(ta) = dom(tg) = {L,R}
/:{pHL,tAHR,tBP—)R}

G={p—R}

A={load;; | i € {A,B},j € {L,R}}

U {unload;; | i € {A,B},j € {L,R}}

U{move;jj | i € {A,B},),/ € {L,R},j # j'} with:
load; j has preconditions {t; — j, p + j}, effects {p — i}
unload; j has preconditions {t; — j, p — i}, effects {p — j}
move; j i» has preconditions {t; — j}, effects {t; — '}
All actions have cost 1.

SAS™
00000e

State Space for Example Task

e state {p — i, ta — j, tg — k} denoted as ijk
@ annotations of edges not shown for simplicity

o for example, edge from LLL to ALL has annotation loada |

Abstractions
000000000000

Abstractions

Abstractions
000000000000

State Space Abstraction

State space abstractions drop distinctions between certain states,
but preserve the state space behavior as well as possible.

@ An abstraction of a state space S is defined by
an abstraction function « that determines which states
can be distinguished in the abstraction.

o Based on S and a, we compute the abstract state space §¢
which is “similar” to S but smaller.

@ Main idea: Use the cheapest cost in S% as a heuristic.

Abstractions
00e000000000

Induced Abstraction

Definition (induced abstraction)
Let S = (S, A, cost, T, sy, Si) be a state space,
and let @ : S — S’ be a surjective function.
The abstraction of S induced by «, denoted as &%,
is the state space S® = (5', A, cost, T', s, S;.) with:
o T'={(afs),a,a(t)) | (s,a,t) € T}
° s = afs)
o S, ={a(s)|se S}

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

abstraction function o : S — §¢

a(A)=W «a(B)=X afC)=Y
aD)=2Z ao(E)=Z ao(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

@ © ORO
6640 ® v

abstraction function oo : S — §¢

alA)=W «a(B)=X «C)

=Y
aD)=Z «o(E)=Z ao(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

@ © ~w
6640 ® v

abstraction function oo : S — §¢

af W a(B)=X «C)

A) = —y
aD)=Z «o(E)=Z ao(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

@ © ~w
6640 ® v

abstraction function oo : S — §¢

alA)=W «a(B)=X «C)

=Y
aD)=2Z «o(E)=Z o(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

O-® © ~W—()
QGAQ @ v

abstraction function oo : S — §¢

=X a(C)=Y
Z o(F)=Y

a(A)=W «(B)
a(D)=2Z «(E)

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

666 b °

abstraction function oo : S — §¢

alA)=W «a(B)=X ao(C)=Y
aD)=7Z «o(E)=Z ao(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

s66 ¥ °©

abstraction function oo : S — §¢

alA)=W «a(B)=X «o(C)=Y
aD)=2Z ao(E)=Z «o(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

s6e ®©

abstraction function oo : S — §¢

a(A)=W a(B)=X o)

=Y
aD)=2Z «o(E)=Z o(F)=Y

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

6 e é

abstraction function oo : S — §¢

X a(C)=Y
Z ofF)=Y

a(A)=W «(B)
a(D)=2Z «(E)

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

abstraction function oo : S — §¢

alA)=W «a(B)=X «oC)=
a(D)=2Z «o(E)=2Z o

Abstractions
000800000000

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

@~ (© OnO
QG‘G @ .

intuition: grouping states

A=W aoB)=X o(C)=Y 0‘@ 9
oD)=Z a(E)=Z a(F)=Y ‘i‘
(o) (&)

abstraction function oo : S — §¢

Abstractions
0000e0000000

Abstraction Heuristic

Use abstract solution cost (solution cost of a(s) in S¢) as
heuristic for concrete solution cost (solution cost of s in S).

Definition (abstraction heuristic)

The abstraction heuristic for abstraction o maps each state s to its
abstract solution costs

h(s) := hsa(a(s))

where h%, is the perfect heuristic in S¢.

Abstractions

O0000e000000

Abstraction: Example

concrete state space

Abstractions
00000000000

Abstraction: Example

(an) abstract state space

j

R LR RL

LLR RRL

N
@)

LLL fe— «<—RRR
cRm

n

LRL RLR

N

BRL BLR

remark: Most edges correspond to several (parallel) transitions
with different annotations.

Abstractions
000000080000

Abstraction Heuristic: Example

/()\ ALR ARL O
< L
T
BRL BLR

h({p—Lta— R, tg—R})=3

Abstractions
00000000 e000

Abstraction Heuristics: Discussion

Every abstraction heuristic is admissible and consistent.
(proof idea?)
@ The choice of the abstraction function « is very important.

e Every « yields an admissible and consistent heuristic.
e But most « lead to poor heuristics.

An effective o must yield an informative heuristic . ..

...as well as being efficiently computable.

How to find a suitable o?

Abstractions
000000000800

Usually a Bad Idea: Single-State Abstraction

one state abstraction: «a(s) := const
-+ compactly representable and « easy to compute

— very uninformed heuristic

Abstractions
000000000080

Usually a Bad Idea: Identity Abstraction

identity abstraction: a(s) :='s
+ perfect heuristic and « easy to compute

— too many abstract states ~» computation of h* too hard

Abstractions

00000000000 e

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics
How to find a good abstraction?

Several successful methods:

@ pattern databases (PDBs) ~ this course
(Culberson & Schaeffer, 1996)

@ merge-and-shrink abstractions
(Drager, Finkbeiner & Podelski, 2006)

@ Cartesian abstractions
(Seipp & Helmert, 2013)

Pattern Databases

©0000000

Pattern Databases

Pattern Databases
[e] leleleleele)

Pattern Databases: Background

@ The most common abstraction heuristics are
pattern database heuristics.

e originally introduced for the 15-puzzle (Culberson &
Schaeffer, 1996) and for Rubik's Cube (Korf, 1997)

@ introduced for automated planning by Edelkamp (2001)
@ for many search problems the best known heuristics

@ many many research papers studying

theoretical properties
efficient implementation and application
pattern selection

Pattern Databases
[e]e] lelele]ele)

Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic
where

@ some aspects (= state variables) of the task
are preserved with perfect precision while

@ all other aspects are not preserved at all.

formalized as projections to a pattern P C V:
wp(s) :=={v—s(v)|veP}

example:
e s={p— L ta— R tg— R}
@ projection on P = {p} (= ignore trucks):
mp(s) ={p— L}
@ projection on P = {p,ta} (= ignore truck B):
7TP(S) = {p — L, tg — R}

Pattern Databases
[e]e]e] lelelele)

Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection mp on P is
called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: hf for K™

remark:

@ ‘“pattern databases” in analogy to endgame databases
(which have been successfully applied in 2-person-games)

Pattern Databases
[e]e]e]e] lelele)

Example: Concrete State Space

e state variable package: {L,R,A,B}
e state variable truck A: {L,R}
e state variable truck B: {L,R}

Pattern Databases
00000800

Example: Projection (1)

abstraction induced by 7(,.cage):

LLR

LRL

h{package} (LRR) —9

h{package,truck A}(LRR) -9

Pattern Databases
0000000e

Pattern Databases in Practice

practical aspects which we do not discuss in detail:
@ How to automatically find good patterns?

@ How to combine multiple PDB heuristics?
@ How to implement PDB heuristics efficiently?
e good implementations efficiently handle abstract state spaces
with 107, 10 or more abstract states
o effort independent of the size of the concrete state space
o usually all heuristic values are precomputed
~~ space complexity = number of abstract states

Summary

Summary
oce

Summary

@ basic idea of abstraction heuristics: estimate solution cost
by considering a smaller planning task.

o formally: abstraction function o maps states to abstract
states and thus defines which states can be distinguished
by the resulting heuristic.

@ induces abstract state space whose solution costs
are used as heuristic

@ Pattern database heuristics are abstraction heuristics
based on projections onto state variable subsets (patterns):
states are distinguishable iff they differ on the pattern.

	SAS+
	

	Abstractions
	

	Pattern Databases
	

	Summary
	

