Foundations of Artificial Intelligence

36. Automated Planning: Delete Relaxation Heuristics

Thomas Keller and Florian Pommerening

University of Basel

May 8, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023 1 / 24

Chapter overview: automated planning

- ▶ 33. Introduction
- ▶ 34. Planning Formalisms

Automated Planning: Overview

- ▶ 35.–36. Planning Heuristics: Delete Relaxation
 - ▶ 35. Delete Relaxation
 - ▶ 36. Delete Relaxation Heuristics
- ▶ 37. Planning Heuristics: Abstraction
- ▶ 38.—39. Planning Heuristics: Landmarks

Foundations of Artificial Intelligence

May 8, 2023 — 36. Automated Planning: Delete Relaxation Heuristics

- 36.1 Relaxed Planning Graphs
- 36.2 Maximum and Additive Heuristics
- 36.3 FF Heuristic
- 36.4 Summary

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023 2 / 24

36. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs

36.1 Relaxed Planning Graphs

36. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs

Relaxed Planning Graphs

- relaxed planning graphs: represent which variables in Π^+ can be reached and how
- \triangleright graphs with variable layers V^i and action layers A^i
 - ▶ variable layer V^0 contains the variable vertex v^0 for all $v \in I$
 - \triangleright action layer A^{i+1} contains the action vertex a^{i+1} for action aif V^i contains the vertex v^i for all $v \in pre(a)$
 - \triangleright variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^i , or previous action layer contains a^{i+1} with $v \in add(a)$

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023 5 / 24

36. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs

Relaxed Planning Graphs (Continued)

- ightharpoonup goal vertices G^i if $v^i \in V^i$ for all $v \in G$
- graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers $\rightsquigarrow V^{i+1} = V^i$ and $A^{i+1} = A^i$ (Why?)
- directed edges:
 - from v^i to a^{i+1} if $v \in pre(a)$ (precondition edges)
 - From a^i to v^i if $v \in add(a)$ (effect edges)
 - ▶ from v^i to G^i if $v \in G$ (goal edges)
 - \triangleright from v^i to v^{i+1} (no-op edges)

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs

Illustrative Example

We will write actions a with $pre(a) = \{p_1, \dots, p_k\},\$ $add(a) = \{q_1, \dots, q_l\}, del(a) = \emptyset \text{ and } cost(a) = c$ as $p_1, \ldots, p_k \xrightarrow{c} q_1, \ldots, q_l$

$$V = \{m, n, o, p, q, r, s, t\}$$

$$I = \{m\}$$

$$G = \{o, p, q, r, s\}$$

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

$$a_1 = m \xrightarrow{3} n, o$$

$$a_2 = m, o \xrightarrow{1} p$$

$$a_3 = n, o \xrightarrow{1} q$$

$$a_4 = n \xrightarrow{1} r$$

$$a_5 = p \xrightarrow{1} q, r$$

$$a_6 = p \xrightarrow{1} s$$

36. Automated Planning: Delete Relaxation Heuristics Relaxed Planning Graphs Illustrative Example: Relaxed Planning Graph Keller & F. Pommerening (University of B Foundations of Artificial Intelligence May 8, 2023

Generic Relaxed Planning Graph Heuristic

```
Heuristic Values from Relaxed Planning Graph
function generic-rpg-heuristic(\langle V, I, G, A \rangle, s):
     \Pi^+ := \langle V, s, G, A^+ \rangle
     for k \in \{0, 1, 2, \dots\}:
          rpg := RPG_k(\Pi^+)
                                    [relaxed planning graph to layer k]
          if rpg contains a goal node:
                Annotate nodes of rpg.
                if termination criterion is true:
                     return heuristic value from annotations
          else if graph has stabilized:
                return \infty
```

- → general template for RPG heuristics
- → to obtain concrete heuristic: instantiate highlighted elements

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

Maximum and Additive Heuristics

36.2 Maximum and Additive Heuristics

In this course:

Many planning heuristics fit this general template.

Concrete Examples for Generic RPG Heuristic

- ► maximum heuristic h^{max} (Bonet & Geffner, 1999)
- ► additive heuristic h^{add} (Bonet, Loerincs & Geffner, 1997)
- ► Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

remark:

▶ The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

36. Automated Planning: Delete Relaxation Heuristics

Maximum and Additive Heuristics

Maximum and Additive Heuristics

- \blacktriangleright h^{max} and h^{add} are the simplest RPG heuristics.
- Vertex annotations are numerical values.
- The vertex values estimate the costs
 - to make a given variable true
 - to reach and apply a given action
 - to reach the goal

Maximum and Additive Heuristics: Filled-in Template

 h^{max} and h^{add}

computation of annotations:

costs of variable vertices: 0 in layer 0; otherwise minimum of the costs of predecessor vertices

costs of action and goal vertices: maximum (h^{max}) or sum (h^{add}) of predecessor vertex costs; for action vertices a^i , also add cost(a)

termination criterion:

stability: terminate if $V^i = V^{i-1}$ and costs of all vertices in V^i equal corresponding vertex costs in V^{i-1}

heuristic value:

value of goal vertex in the last layer

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

intuition:

- variable vertices:
 - choose cheapest way of reaching the variable

Maximum and Additive Heuristics: Intuition

- ► action/goal vertices:
 - \blacktriangleright h^{max} is optimistic: assumption: when reaching the most expensive precondition variable, we can reach the other precondition variables in parallel (hence maximization of costs)
 - \blacktriangleright h^{add} is pessimistic: assumption: all precondition variables must be reached completely independently of each other (hence summation of costs)

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

h^{max} and h^{add} : Remarks

comparison of h^{max} and h^{add} :

- both are safe and goal-aware
- $ightharpoonup h^{\text{max}}$ is admissible and consistent; h^{add} is neither.
- \rightarrow h^{add} not suited for optimal planning
- ▶ However, h^{add} is usually much more informative than h^{max} . Greedy best-first search with h^{add} is a decent algorithm.
- ► Apart from not being admissible, h^{add} often vastly overestimates the actual costs because positive synergies between subgoals are not recognized.
- → FF heuristic

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

36.3 FF Heuristic

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

FF Heuristic

The FF Heuristic

identical to h^{add} , but additional steps at the end:

- Mark goal vertex in the last graph layer.
- ► Apply the following marking rules until nothing more to do:
 - marked action or goal vertex? → mark all predecessors

 - ightharpoonup marked variable vertex v^i in layer i > 1? \rightsquigarrow mark one predecessor with minimal h^{add} value (tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

- ▶ The actions corresponding to the marked action vertices build a relaxed plan.
- ► The cost of this plan is the heuristic value.

36. Automated Planning: Delete Relaxation Heuristics FF Heuristic Illustrative Example: h^{FF} $h^{\mathsf{FF}}(\{m\}) = 3 + 1 + 1 + 1 + 1 = 7$ Keller & F. Pommerening (University of B Foundations of Artificial Intelligence May 8, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

FF Heuristic: Remarks

 \triangleright Like h^{add} , h^{FF} is safe and goal-aware, but neither admissible nor consistent.

- \triangleright approximation of h^+ which is always at least as good as h^{add}
- usually significantly better
- \triangleright can be computed in almost linear time $(O(n \log n))$ in the size of the description of the planning task
- computation of heuristic value depends on tie-breaking of marking rules (hFF not well-defined)
- ▶ one of the most successful planning heuristics

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task $\langle V, I, G, A \rangle$.

Then

- ► $h^{\max}(s) \le h^+(s) \le h^*(s)$
- $h^{\max}(s) \leq h^+(s) \leq h^{\mathsf{FF}}(s) \leq h^{\mathsf{add}}(s)$
- \blacktriangleright h^* and h^{FF} are incomparable
- \blacktriangleright h^* and h^{add} are incomparable

further remarks:

- ► For non-admissible heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- \triangleright For relaxation heuristics, the objective is to approximate h^+ as closely as possible.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

36. Automated Planning: Delete Relaxation Heuristics

36.4 Summary

36. Automated Planning: Delete Relaxation Heuristics

Summary

- ► Many delete relaxation heuristics can be viewed as computations on relaxed planning graphs (RPGs).
- \triangleright examples: h^{max} , h^{add} , h^{FF}
- $ightharpoonup h^{\text{max}}$ and h^{add} propagate numeric values in the RPGs
 - \triangleright difference: h^{max} computes the maximum of predecessor costs for action and goal vertices; h^{add} computes the sum
- ► h^{FF} marks vertices and sums the costs of marked action vertices.
- ightharpoonup generally: $h^{\max}(s) < h^{+}(s) < h^{\text{FF}}(s) < h^{\text{add}}(s)$

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023