Foundations of Artificial Intelligence
36. Automated Planning: Delete Relaxation Heuristics

Thomas Keller and Florian Pommerening
University of Basel
May 8, 2023

Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

Foundations of Artificial Intelligence
May 8, 2023 - 36. Automated Planning: Delete Relaxation Heuristics

36.1 Relaxed Planning Graphs

36.2 Maximum and Additive Heuristics
36.3 FF Heuristic
36.4 Summary

Automated Planning: Overview

Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.-36. Planning Heuristics: Delete Relaxation
- 35. Delete Relaxation
- 36. Delete Relaxation Heuristics
- 37. Planning Heuristics: Abstraction
- 38.-39. Planning Heuristics: Landmarks

36. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs

36.1 Relaxed Planning Graphs

- relaxed planning graphs: represent which variables in Π^{+}
goal vertices G^{i} if $v^{i} \in V^{i}$ for all $v \in G$ can be reached and how
- graphs with variable layers V^{i} and action layers A^{i}
- variable layer V^{0} contains the variable vertex v^{0} for all $v \in I$
- action layer A^{i+1} contains the action vertex a^{i+1} for action a if V^{i} contains the vertex v^{\prime} for all $v \in \operatorname{pre}(a)$
- variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^{i}, or previous action layer contains a^{i+1} with $v \in \operatorname{add}(a)$
- graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers $\rightsquigarrow V^{i+1}=V^{i}$ and $A^{i+1}=A^{i}($ Why? $)$
- directed edges:
- from v^{i} to a^{i+1} if $v \in \operatorname{pre}(a)$ (precondition edges)
- from a^{i} to v^{i} if $v \in \operatorname{add}(a)$ (effect edges)
- from v^{i} to G^{i} if $v \in G$ (goal edges)
- from v^{i} to v^{i+1} (no-op edges)
. Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

36. Automated Planning: Delete Relaxation Heuristics

Illustrative Example

We will write actions a with $\operatorname{pre}(a)=\left\{p_{1}, \ldots, p_{k}\right\}$,
$\operatorname{add}(a)=\left\{q_{1}, \ldots, q_{l}\right\}, \operatorname{del}(a)=\emptyset$ and $\operatorname{cost}(a)=c$
as $p_{1}, \ldots, p_{k} \xrightarrow{c} q_{1}, \ldots, q_{1}$

$$
\begin{aligned}
V & =\{m, n, o, p, q, r, s, t\} \\
I & =\{m\} \\
G & =\{o, p, q, r, s\} \\
A & =\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\} \\
a_{1} & =m \xrightarrow{\rightarrow} n, o \\
a_{2} & =m, o \xrightarrow{\rightarrow} p \\
a_{3} & =n, o \xrightarrow{1} q \\
a_{4} & =n \xrightarrow{1} r \\
a_{5} & =p \xrightarrow{1} q, r \\
a_{6} & =p \xrightarrow{1} s
\end{aligned}
$$

36. Automated Planning: Delete Relaxation Heurisitics

37. Automated Planning: Delete Relaxation Heuristics

Relaxed Planning Graphs
Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph
function generic-rpg-heuristic $(\langle V, I, G, A\rangle, s)$:
$\Pi^{+}:=\left\langle V, s, G, A^{+}\right\rangle$
for $k \in\{0,1,2, \ldots\}$: $r p g:=R P G_{k}\left(\Pi^{+}\right) \quad$ [relaxed planning graph to layer $\left.k\right]$ if $r p g$ contains a goal node:

Annotate nodes of rpg.
if termination criterion is true:
return heuristic value from annotations else if graph has stabilized:
return ∞
\rightsquigarrow general template for RPG heuristics
\rightsquigarrow to obtain concrete heuristic: instantiate highlighted elements

36. Automated Planning: Delete Relaxation Heuristics
 Relaxed Planning Graphs
 Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.
In this course:

- maximum heuristic $h^{\text {max }}$ (Bonet \& Geffner, 1999)
- additive heuristic $h^{\text {add }}$ (Bonet, Loerincs \& Geffner, 1997)
- Keyder \& Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann \& Nebel, 2001)
remark:
- The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.
36.2 Maximum and Additive
Heuristics
- $h^{\text {max }}$ and $h^{\text {add }}$ are the simplest RPG heuristics.
- Vertex annotations are numerical values.
- The vertex values estimate the costs
- to make a given variable true
- to reach and apply a given action
- to reach the goal

36. Automated Planning: Delete Relaxation Heuristics
$h^{\text {max }}$ and $h^{\text {add }}$
computation of annotations:

- costs of variable vertices:

0 in layer 0 ;
otherwise minimum of the costs of predecessor vertices

- costs of action and goal vertices:
maximum ($h^{\text {max }}$) or sum ($h^{\text {add }}$) of predecessor vertex costs; for action vertices a^{i}, also add $\operatorname{cost}(a)$
termination criterion:
- stability: terminate if $V^{i}=V^{i-1}$ and costs of all vertices in V^{i} equal corresponding vertex costs in V^{i-1}
heuristic value:
- value of goal vertex in the last layer

Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

Maximum and Additive Heuristics: Intuition
intuition:

- variable vertices:
- choose cheapest way of reaching the variable
- action/goal vertices:
- $h^{\text {max }}$ is optimistic: assumption:
when reaching the most expensive precondition variable, we can reach the other precondition variables in parallel (hence maximization of costs)
- $h^{\text {add }}$ is pessimistic: assumption
all precondition variables must be reached completely independently of each other (hence summation of costs)

$$
h^{\max }(\{m\})=5
$$

Illustrative Example: $h^{\text {add }}$

$$
h^{\text {add }}(\{m\})=21
$$

T. Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence
comparison of $h^{\text {max }}$ and $h^{\text {add }}$

- both are safe and goal-aware
- $h^{\text {max }}$ is admissible and consistent; $h^{\text {add }}$ is neither.
$\rightsquigarrow h^{\text {add }}$ not suited for optimal planning
- However, $h^{\text {add }}$ is usually much more informative than $h^{\text {max }}$. Greedy best-first search with $h^{\text {add }}$ is a decent algorithm.
- Apart from not being admissible, $h^{\text {add }}$ often vastly overestimates the actual costs because positive synergies between subgoals are not recognized.
\rightsquigarrow FF heuristic

36. Automated Planning: Delete Relaxation Heuristics FF Heuristic

FF Heuristic

The FF Heuristic
identical to $h^{\text {add }}$, but additional steps at the end:

- Mark goal vertex in the last graph layer.
- Apply the following marking rules until nothing more to do:
- marked action or goal vertex?
\rightsquigarrow mark all predecessors
- marked variable vertex v^{i} in layer $i \geq 1$?
\rightsquigarrow mark one predecessor with minimal $h^{\text {add }}$ value
(tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

- The actions corresponding to the marked action vertices build a relaxed plan.
- The cost of this plan is the heuristic value.

36.3 FF Heuristic

- Like $h^{\text {add }}, h^{\mathrm{FF}}$ is safe and goal-aware, but neither admissible nor consistent.
- approximation of h^{+}which is always at least as good as $h^{\text {add }}$
- usually significantly better
- can be computed in almost linear time $(O(n \log n))$ in the size of the description of the planning task
- computation of heuristic value depends on tie-breaking of marking rules (h^{FF} not well-defined)
- one of the most successful planning heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task $\langle V, I, G, A\rangle$.
Then

- $h^{\text {max }}(s) \leq h^{+}(s) \leq h^{*}(s)$
- $h^{\text {max }}(s) \leq h^{+}(s) \leq h^{\mathrm{FF}}(s) \leq h^{\text {add }}(s)$
- h^{*} and h^{FF} are incomparable
- h^{*} and $h^{\text {add }}$ are incomparable
further remarks:
- For non-admissible heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- For relaxation heuristics, the objective is to approximate h^{+} as closely as possible.
T. Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

May 8, 2023

Summary

- Many delete relaxation heuristics can be viewed as computations on relaxed planning graphs (RPGs).
- examples: $h^{\text {max }}, h^{\text {add }}, h^{\mathrm{FF}}$
- $h^{\text {max }}$ and $h^{\text {add }}$ propagate numeric values in the RPGs
- difference: $h^{\text {max }}$ computes the maximum of predecessor costs for action and goal vertices; $h^{\text {add }}$ computes the sum
- h^{FF} marks vertices and sums the costs of marked action vertices.
- generally: $h^{\text {max }}(s) \leq h^{+}(s) \leq h^{\mathrm{FF}}(s) \leq h^{\text {add }}(s)$

