

Thomas Keller and Florian Pommerening

University of Basel

May 3, 2023

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

Foundations of Artificial Intelligence May 3, 2023 — 34. Automated Planning: Planning Formalisms		
34.1 Four Formalisms		
34.2 STRIPS		
34.3 ADL, SAS ⁺ and PDDL		
34.4 Summary		
Keller & F. Pommerening (University of B Foundations of Artificial Intelligence	May 3, 2023	2 / 20

34. Automated Planning: Planning Formalisms

Four Formalisms

34.1 Four Formalisms

May 3, 2023 1 / 20

Four Planning Formalisms

• We introduce four planning formalisms:

- **STRIPS** (Stanford Research Institute Problem Solver)
- ADL (Action Description Language)
- SAS⁺ (Simplified Action Structures)
- PDDL (Planning Domain Definition Language)
- STRIPS and SAS⁺ are the most simple formalisms; in the next chapters, we restrict our considerations to these.

34. Automated Planning: Planning Formalisms

STRI

May 3, 2023 5 / 20

Four Formalisms

```
STRIPS: Basic Concepts
```

basic concepts of STRIPS:

- STRIPS is the most simple common planning formalism.
- state variables are binary (true or false)

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

- states s (based on a given set of state variables V) can be represented in two equivalent ways:
 - ▶ as assignments $s: V \to {F, T}$
 - ▶ as sets $s \subseteq V$, where s encodes the set of state variables that are true in s

Where s encodes the set of state variables that are tr We will use the set representation.

- goals and preconditions of actions are given as sets of variables that must be true (values of other variables do not matter)
- effects of actions are given as sets of variables that are set to true and set to false, respectively

34.2 STRIPS

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

34. Automated Planning: Planning Formalisms STRIPS STRIPS Planning Task Definition (STRIPS Planning Task) A STRIPS planning task is a 4 tuple $\Pi = \langle V, I, G, A \rangle$ with V: finite set of state variables $I \subseteq V:$ the initial state $G \subseteq V:$ the set of goals A: finite set of actions, where for all actions $a \in A$, the following is defined: $pre(a) \subseteq V:$ the preconditions of a $add(a) \subseteq V:$ the add effects of a $cost(a) \in \mathbb{N}_0:$ the costs of aremark: action costs are an extension of "traditional" STRIPS

May 3, 2023

6 / 20

 \blacktriangleright cost(move_{R,B,G}) = 1

34. Automated Planning: Planning Formalisms Example: Blocks World in STRIPS Example (A Blocks World Planning Task in STRIPS) $\Pi = \langle V, I, G, A \rangle$ with: \blacktriangleright $V = \{on_{R,B}, on_{R,G}, on_{B,R}, on_{B,G}, on_{G,R}, on_{G$ $on-table_R$, $on-table_R$, $on-table_G$, $clear_{R}$, $clear_{R}$, $clear_{C}$ \blacktriangleright $I = \{on_G, R, on-table_R, on-table_B, clear_G, clear_B\}$ \blacktriangleright $G = \{on_{R,B}, on_{B,G}\}$ $\blacktriangleright A = \{move_{R,B,G}, move_{R,G,B}, move_{B,R,G}, \}$ $move_{B,G,R}, move_{G,R,B}, move_{G,B,R},$ $to-table_{R,B}$, $to-table_{R,G}$, $to-table_{B,R}$, $to-table_{B,G}$, $to-table_{G,B}$, $to-table_{G,B}$, $from-table_{R,B}$, $from-table_{R,G}$, $from-table_{B,R}$, $from-table_{B,G}$, $from-table_{G,R}$, $from-table_{G,R}$. . . Keller & F. Pommerening (University of B Foundations of Artificial Intelligence May 3, 2023 10 / 20

34.3 ADL, SAS^+ and PDDL

34. Automated Planning: Planning Formalisms		STRI
Why STRIPS?		
5		
STRIPS is particularly simple.		
\rightsquigarrow simplifies the design and implementation		
of planning algorithms		
often cumbersome for the "user"		
to model tasks directly in STRIPS		
but: STRIPS is equally "powerful"		
to much more complex planning formalisms		
\rightsquigarrow automatic "compilers" exist that translate more c	omplex	
formalisms (like ADL and SAS ⁺) to STRIPS		
T. Keller & F. Pommerening (University of B – Foundations of Artificial Intelligence	May 3, 2023	14 /

34. Automated Planning: Planning Formalisms Basic Concepts of ADL ADL, SAS^+ and PDDL

basic concepts of ADL:

- Like STRIPS, ADL uses propositional variables (true/false) as state variables.
- preconditions of actions and goal are arbitrary logic formulas (action applicable/goal reached in states that satisfy the formula)
- in addition to STRIPS effects, there are conditional effects: variable v is only set to true/false if a given logical formula is true in the current state

34. Automated Planning: Planning Formalisms

ADL, SAS⁺ and PDDL

Basic Concepts of SAS⁺

basic concepts of SAS⁺:

- very similar to STRIPS: state variables not necessarily binary, but with given finite domain (cf. CSPs)
- states are assignments to these variables (cf. CSPs)
- preconditions and goals given as partial assignments example: $\{v_1 \mapsto a, v_3 \mapsto b\}$ as preconditions (or goals)
 - \blacktriangleright If $s(v_1) = a$ and $s(v_3) = b$. then the action is applicable in s (or goal is reached)
 - values of other variables do not matter
- effects are assignments to subset of variables
 - example: effect $\{v_1 \mapsto b, v_2 \mapsto c\}$ means
 - ln the successor state s', $s'(v_1) = b$ and $s'(v_2) = c$.
 - All other variables retain their values.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

May 3, 2023

34. Automated Planning: Planning Formalisms

Summar

17 / 20

34.4 Summary

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

Basic Concept of PDDL

34. Automated Planning: Planning Formalisms

- PDDL is the standard language used in practice to describe planning tasks.
- descriptions in (restricted) predicate logic instead of propositional logic (\rightsquigarrow even more compact)
- other features like numeric variables and derived variables. (axioms) for defining "macros"

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

18 / 20