Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook

Thomas Keller and Florian Pommerening

University of Basel

April 26, 2023

Local Search: Walksat

How Difficult Is SAT?

Dutlook

Summary 000

Propositional Logic: Overview

Chapter overview: propositional logic

- 29. Basics
- 30. Reasoning and Resolution
- 31. DPLL Algorithm
- 32. Local Search and Outlook

Local Search: Walksat

How Difficult Is SAT?

Dutlook

Summary 000

Local Search: GSAT

Local Search: GSAT $0 \bullet 000$

Local Search: Walksat

How Difficult Is SAT?

Summary 000

Local Search for SAT

- Apart from systematic search, there are also successful local search methods for SAT.
- These are usually not complete and in particular cannot prove unsatisfiability for a formula.
- They are often still interesting because they can find models for hard problems.
- However, all in all, DPLL-based methods have been more successful in recent years.

Local Search: Walksat

How Difficult Is SAT?

Outlook 000 Summary 000

Local Search for SAT: Ideas

local search methods directly applicable to SAT:

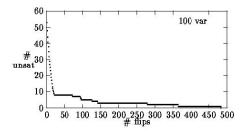
- candidates: (complete) assignments
- solutions: satisfying assignments
- search neighborhood: change assignment of one variable
- heuristic: depends on algorithm; e.g., #unsatisfied clauses

GSAT (Greedy SAT): Pseudo-Code

auxiliary functions:

- violated(Δ , I): number of clauses in Δ not satisfied by I
- flip(1, v): assignment that results from 1 when changing the valuation of proposition v

function $GSAT(\Delta)$:


```
 \begin{array}{l} \textbf{repeat } \textit{max-tries times:} \\ \textit{l} := a \text{ random assignment} \\ \textbf{repeat } \textit{max-flips times:} \\ \textbf{if } \textit{l} \models \Delta: \\ \textbf{return } \textit{l} \\ \textit{V}_{greedy} := \text{the set of variables } \textit{v} \text{ occurring in } \Delta \\ \textit{for which violated}(\Delta, \textit{flip}(\textit{l}, \textit{v})) \text{ is minimal} \\ \textit{randomly select } \textit{v} \in \textit{V}_{greedy} \\ \textit{l} := \textit{flip}(\textit{l}, \textit{v}) \\ \end{array}
```

Local Search: GSAT	Local Search: Walksat	How Difficult Is SAT?	Outlook	Summary
0000●	000	0000000	000	000
GSAT: Discus	ssion			

GSAT has the usual ingredients of local search methods:

- hill climbing
- randomness (although relatively little!)
- restarts

empirically, much time is spent on plateaus:

Local Search: Walksat

How Difficult Is SAT?

Outlook

Summary 000

Local Search: Walksat

How Difficult Is SAT

Outlook 000 Summary 000

Walksat: Pseudo-Code

$lost(\Delta, I, v)$: #clauses in Δ satisfied by I, but not by flip(I, v)

function Walksat(Δ):

```
repeat max-tries times:
      I := a random assignment
      repeat max-flips times:
            if I \models \Delta:
                   return /
            C := randomly chosen unsatisfied clause in \Delta
            if there is a variable v in C with lost(\Delta, I, v) = 0:
                   V_{\text{choices}} := \text{all such variables in } C
            else with probability p<sub>noise</sub>:
                   V_{\text{choices}} := \text{all variables occurring in } C
            else:
                   V_{\text{choices}} := \text{variables } v \text{ in } C \text{ that minimize } \text{lost}(\Delta, I, v)
            randomly select v \in V_{choices}
            I := flip(I, v)
return no solution found
```

Local Search: Walksat

How Difficult Is SAT?

Outlook

Summary 000

Walksat vs. GSAT

Comparison GSAT vs. Walksat:

- much more randomness in Walksat because of random choice of considered clause
- "counter-intuitive" steps that temporarily increase the number of unsatisfied clauses are possible in Walksat
- \rightsquigarrow smaller risk of getting stuck in local minima

Local Search: Walksat

How Difficult Is SAT?

Outlook

Summary 000

How Difficult Is SAT?

Local Search: Walksat

How Difficult Is SAT?

Outlook 000 Summary 000

How Difficult is SAT in Practice?

- SAT is NP-complete.
- whow algorithms like DPLL need exponential time in the worst case
 - What about the average case?
 - depends on how the average is computed (no "obvious" way to define the average)

SAT: Polynomial Average Runtime

Good News (Goldberg 1979)

construct random CNF formulas with n variables and k clauses as follows:

In every clause, every variable occurs

- positively with probability $\frac{1}{3}$,
- negatively with probability $\frac{1}{3}$,
- not at all with probability $\frac{1}{3}$.

Then the runtime of DPLL in the average case is polynomial in n and k.

 \rightsquigarrow not a realistic model for practically relevant CNF formulas (because almost all of the random formulas are satisfiable)

How Difficult Is SAT?

utlook 00 Summary 000

Phase Transitions

How to find interesting random problems?

conjecture of Cheeseman et al .:

Cheeseman et al., IJCAI 1991

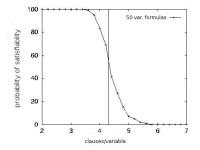
Every NP-complete problem has at least one size parameter such that the difficult instances are close to a critical value of this parameter.

This so-called phase transition separates two problem regions, e.g., an over-constrained and an under-constrained region.

 \rightsquigarrow confirmed for, e.g., graph coloring, Hamiltonian paths and SAT

Local Search: Walksat

How Difficult Is SAT?


Outlook 200 Summary 000

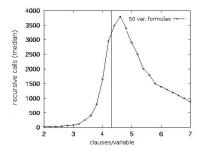
Phase Transitions for 3-SAT

Problem Model of Mitchell et al., AAAI 1992

- fixed clause size of 3
- in every clause, choose the variables randomly
- literals positive or negative with equal probability

critical parameter: #clauses divided by #variables phase transition at ratio ≈ 4.3

Local Search: Walksat


How Difficult Is SAT?

Outlook

Summary 000

Phase Transition of DPLL

DPLL shows high runtime close to the phase transition region:

Local Search: Walksat

How Difficult Is SAT?

Outlook 000 Summary 000

Phase Transition: Intuitive Explanation

- If there are many clauses and hence the instance is unsatisfiable with high probability, this can be shown efficiently with unit propagation.
- If there are few clauses, there are many satisfying assignments, and it is easy to find one of them.
- Close to the phase transition, there are many "almost-solutions" that have to be considered by the search algorithm.

Local Search: Walksat

How Difficult Is SAT?

Outlook •00 Summary 000

Outlook

State of the Art

- research on SAT in general:
 - \rightsquigarrow http://www.satlive.org/
- conferences on SAT since 1996 (annually since 2000)
 → http://www.satisfiability.org/
- competitions for SAT algorithms since 1992 ~ http://www.satcompetition.org/
 - largest instances have more than 1 000 000 literals
 - different tracks (e.g., SAT vs. SAT+UNSAT; industrial vs. random instances)

More Advanced Topics

DPLL-based SAT algorithms:

- efficient implementation techniques
- accurate variable orders
- clause learning

local search algorithms:

- efficient implementation techniques
- adaptive search methods ("difficult" clauses are recognized after some time, and then prioritized)

SAT modulo theories:

 extension with background theories (e.g., real numbers, data structures, ...)

Local Search: Walksat

How Difficult Is SAT?

Dutlook

Summary •00

Summary

Local Search: GSAT	Local Search: Walksat	How Difficult Is SAT?	Outlook	Summary
00000	000		000	0●0
Summary (1)				

- local search for SAT searches in the space of interpretations; neighbors: assignments that differ only in one variable
- has typical properties of local search methods: evaluation functions, randomization, restarts
- example: GSAT (Greedy SAT)
 - hill climbing with heuristic function: #unsatisfied clauses
 - randomization through tie-breaking and restarts
- example: Walksat
 - focuses on randomly selected unsatisfied clauses
 - does not follow the heuristic always, but also injects noise
 - consequence: more randomization as GSAT and lower risk of getting stuck in local minima

Local Search: Walksat

How Difficult Is SAT?

utlook

Summary

- more detailed analysis of SAT shows: the problem is NP-complete, but not all instances are difficult
- randomly generated SAT instances are easy to satisfy if they contain few clauses, and easy to prove unsatisfiable if they contain many clauses
- in between: phase transition