Foundations of Artificial Intelligence

30. Propositional Logic: Reasoning and Resolution

Thomas Keller and Florian Pommerening

University of Basel

April 24, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023 1 / 20

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023 2 / 20

Propositional Logic: Overview

Chapter overview: propositional logic

- ▶ 29. Basics
- ▶ 30. Reasoning and Resolution
- ▶ 31. DPLL Algorithm
- ▶ 32. Local Search and Outlook

30. Propositional Logic: Reasoning and Resolution

30.1 Reasoning

30.2 Resolution

30.3 Summary

Foundations of Artificial Intelligence

April 24, 2023 — 30. Propositional Logic: Reasoning and Resolution

30.1 Reasoning

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

T. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

Reasoning: Intuition

Reasoning: Intuition

- ► Generally, formulas only represent an incomplete description of the world.
- ► In many cases, we want to know if a formula logically follows from (a set of) other formulas.
- ▶ What does this mean?

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

Reasoning: Intuition

- ightharpoonup example: $\varphi = (P \lor Q) \land (R \lor \neg P) \land S$
- \triangleright *S* holds in every model of φ . What about P, Q and R?
- \rightsquigarrow consider all models of φ :
 - $I_1 = \{P \mapsto \mathbf{F}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{F}, S \mapsto \mathbf{T}\}\$
 - $I_2 = \{P \mapsto \mathbf{F}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T}\}$
 - $I_3 = \{P \mapsto \mathbf{T}, Q \mapsto \mathbf{F}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T}\}$
 - $I_A = \{P \mapsto \mathbf{T}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T}\}$

Observation

- ▶ In all models of φ , the formula $Q \vee R$ holds as well.
- ▶ We say: " $Q \lor R$ logically follows from φ ."

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of formulas. A formula ψ logically follows from Φ (in symbols: $\Phi \models \psi$) if all models of Φ are also models of ψ .

In other words: for each interpretation I, if $I \models \varphi$ for all $\varphi \in \Phi$, then also $I \models \psi$.

Question

How can we automatically compute if $\Phi \models \psi$?

- ► One possibility: Build a truth table. (How?)
- ► Are there "better" possibilities that (potentially) avoid generating the whole truth table?

30. Propositional Logic: Reasoning and Resolution

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

$$\Phi \models \psi \quad \textit{iff} \quad (\bigwedge_{\varphi \in \Phi} \varphi) o \psi \ \textit{is a tautology}.$$

Proof.

$$\Phi \models \psi$$

iff for each interpretation I: if $I \models \varphi$ for all $\varphi \in \Phi$, then $I \models \psi$

iff for each interpretation I: if $I \models \bigwedge_{\varphi \in \Phi} \varphi$, then $I \models \psi$

iff for each interpretation $I: I \not\models \bigwedge_{\varphi \in \Phi} \varphi$ or $I \models \psi$

iff for each interpretation $I: I \models (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi$

iff $(\bigwedge_{\varphi \in \Phi} \varphi) \to \psi$ is tautology

Reasoning

Consequence of Deduction Theorem

Reasoning can be reduced to testing validity.

Algorithm

Question: Does $\Phi \models \psi$ hold?

• test if $(\bigwedge_{\varphi \in \Phi} \varphi) \to \psi$ is tautology

② if yes, then $\Phi \models \psi$, otherwise $\Phi \not\models \psi$

In the following: Can we test for validity "efficiently", i.e., without computing the whole truth table?

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

30.2 Resolution

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

Sets of Clauses

for the rest of this chapter:

- prerequisite: formulas in conjunctive normal form
- clause represented as a set C of literals
- \triangleright formula represented as a set \triangle of clauses

Example

Let $\varphi = (P \vee Q) \wedge \neg P$.

- $ightharpoonup \varphi$ in conjunctive normal form
- $\blacktriangleright \varphi$ consists of clauses $(P \lor Q)$ and $\neg P$
- ightharpoonup representation of φ as set of sets of literals: $\{\{P,Q\},\{\neg P\}\}$

30. Propositional Logic: Reasoning and Resolution

Sets of Clauses (Corner Cases)

Distinguish \square (empty clause) vs. \emptyset (empty set of clauses).

▶ ☐ represents a disjunction over zero literals:

$$\bigvee_{L\in\emptyset}L=\bot$$

 $ightharpoonup \Delta_1 = \{\Box\}$ represents a conjunction over one clause:

$$\bigwedge_{\varphi \in \{\bot\}} \varphi = \bot$$

 $ightharpoonup \Delta_2 = \emptyset$ represents a conjunction over zero clauses:

$$\bigwedge_{\varphi \in \emptyset} \varphi = \top$$

Resolution: Idea

Observation

- ► Testing for validity can be reduced to testing unsatisfiability.
- ightharpoonup formula φ valid iff $\neg \varphi$ unsatisfiable

Resolution: Idea

- \triangleright method to test formula φ for unsatisfiability
- \triangleright idea: derive new formulas from φ that logically follow from φ
- ightharpoonup if empty clause \square can be derived $\leadsto \varphi$ unsatisfiable

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution The Resolution Rule

$$\frac{C_1 \cup \{\ell\}, C_2 \cup \{\bar{\ell}\}}{C_1 \cup C_2}$$

- ▶ "From $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$, we can conclude $C_1 \cup C_2$."
- ▶ $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- ightharpoonup The literals ℓ and $\bar{\ell}$ are called resolution literals. the corresponding proposition is called resolution variable.
- resolvent follows logically from parent clauses (Why?)

Example

- resolvent of $\{A, B, \neg C\}$ and $\{A, D, C\}$?
- \blacktriangleright resolvents of $\{\neg A, B, \neg C\}$ and $\{A, D, C\}$?

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

Resolution: Derivations

Definition (derivation)

Notation: $R(\Delta) = \Delta \cup \{C \mid C \text{ is resolvent of two clauses in } \Delta\}$

A clause D can be derived from Δ (in symbols $\Delta \vdash D$) if there is a sequence of clauses $C_1, \ldots, C_n = D$ such that for all $i \in \{1, \ldots, n\}$ we have $C_i \in R(\Delta \cup \{C_1, \ldots, C_{i-1}\})$.

Lemma (soundness of resolution)

If $\Delta \vdash D$, then $\Delta \models D$.

Does the converse direction hold as well (completeness)?

30. Propositional Logic: Reasoning and Resolution

Resolution: Completeness?

The converse of the lemma does not hold in general.

example:

- \blacktriangleright {{A, B}, {¬B, C}} \models {A, B, C}, but
- \blacktriangleright {{A, B}, {¬B, C}} \forall {A, B, C}

but: converse holds for special case of empty clause \square (no proof)

Theorem (refutation-completeness of resolution)

 Δ is unsatisfiable iff $\Delta \vdash \Box$

consequences:

- Resolution is a complete proof method for testing unsatisfiability.
- ▶ Resolution can be used for general reasoning by reducing to a test for unsatisfiability.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

Example

Let $\Phi = \{P \lor Q, \neg P\}$. Does $\Phi \models Q$ hold?

Solution

- ▶ test if $((P \lor Q) \land \neg P) \rightarrow Q$ is tautology
- equivalently: test if $((P \lor Q) \land \neg P) \land \neg Q$ is unsatisfiable
- resulting set of clauses: $\Phi' = \{\{P, Q\}, \{\neg P\}, \{\neg Q\}\}$
- resolving $\{P, Q\}$ with $\{\neg P\}$ yields $\{Q\}$
- resolving $\{Q\}$ with $\{\neg Q\}$ yields \square
- observation: empty clause can be derived. hence Φ' unsatisfiable
- ightharpoonup consequently $\Phi \models Q$

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

Resolution: Discussion

- Resolution is a complete proof method to test formulas for unsatisfiability.
- ▶ In the worst case, resolution proofs can take exponential time.
- ► In practice, a strategy which determines the next resolution step is needed.
- ▶ In the following chapter, we discuss the DPLL algorithm, which is a combination of backtracking and resolution.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

30. Propositional Logic: Reasoning and Resolution

30.3 Summary

30. Propositional Logic: Reasoning and Resolution

Summary

- **Reasoning:** the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ .
- Reasoning can be reduced to testing validity (with the deduction theorem).
- ▶ Testing validity can be reduced to testing unsatisfiability.
- ▶ Resolution is a refutation-complete proof method applicable to formulas in conjunctive normal form.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

April 24, 2023