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Classification

classification:

Propositional Logic

environment:

@ static vs.
@ deterministic vs. VS.
o fully vs. VS. observable

@ discrete vs.
@ single-agent vs.
problem solving method:

° vs. general vs.

(applications also in more complex environments)



Propositional Logic: Overview

Chapter overview: propositional logic
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. DPLL Algorithm

. Local Search and Outlook
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Propositional Logic: Motivation

propositional logic
@ modeling and representing problems and knowledge

@ basics for general problem descriptions and solving strategies
(~ automated planning ~ later in this course)

@ allows for automated reasoning
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Relationship to CSPs

previous topic: constraint satisfaction problems

satisfiability problem in propositional logic can be viewed as
non-binary CSP over {F, T}

formula encodes constraints

solution: satisfying assignment of values to variables
SAT algorithms for this problem: ~» DPLL (next week)
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Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

two-missionaries—-are-on-left-shore
one-cannibal-is-on-left-shore
boat-is-on-left-shore

@ problem description for general problem solvers

@ states represented as truth values of atomic propositions
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Propositional Logic: Intuition

propositions: atomic statements over the world
that cannot be divided further

Propositions with logical connectives like
“and”, “or” and "not” form the propositional formulas.
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Syntax and Semantics

Today, we define syntax and semantics of propositional logic.

Syntax

@ defines which symbols are allowed in formulas
(), NAAB C X, Q0,—, & ...7

@ ...and which sequences of these symbols are correct formuals
(AANB), ((A)AB), NA(B, ...?

Semantics
o defines the meaning of formulas

@ uses interpretations to describe a possible world
h={A—~T,B— F}

@ defines which formulas are true in which worlds
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Y alphabet of propositions
(eg., {P,Q,R,...} or {X1,X2,X3,...}).

Definition (propositional formula)

@ T and L are formulas.

e Every proposition in X is an (atomic) formula.

o If ¢ is a formula, then = is a formula (negation).
@ If ¢ and ¢ are formulas, then so are

e (¢ A1) (conjunction)

o (¢ V1) (disjunction)

o (¢ — ) (implication)

binding strength: (=) > (A) > (V) > (=)
~~ (may omit redundant parentheses, use responsibly)
note: minor differences to Discrete Mathematics course
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Semantics

A formula is true or false,
depending on the interpretation of the propositions.

Semantics: Intuition

@ A proposition p is either true or false.
The truth value of p is determined by an interpretation.

@ The truth value of a formula follows from
the truth values of the propositions.

.

o=(PVQ)AR
o If P and Q are false, then ¢ is false
(independent of the truth value of R).

@ If P and R are true, then ¢ is true
(independent of the truth value of Q).

.
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Semantics: Formally

o defined over interpretation / : ¥ — {T,F}
@ interpretation [: assignment of propositions in *

@ When is a formula ¢ true under interpretation /7
symbolically: When does | = ¢ hold?
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Semantics: Formally

Definition (I |= ¢, read: "/ satisfies " or “¢ holds under /")
Let ¢ and v be propositional formuals over ¥.
o /=Tand /L
I=PiffI(P)=T for Pe X
I =—piff | =@
IE(pAY)iffl =@and | =
I (Vo) iff I = gorl =y
I'E(p—=¢)iff I Eporl=d

Definition (/ = @)

Let ® be a set of propositional formulas
o I =diff  =pforall pcd
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Examples

Example (Interpretation /)
I={P—-T,Q—»T,R—FS—F}

Which formulas are true under /7

° v1=—(PAQ)A(RA=S). Does | = ¢; hold?
@ w2 =(PAQ)A-(RA=S). Does | = ¢z hold?
@ w3 = (R — P). Does | |= ¢3 hold?
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Terminology

Definition (model)
An interpretation / is called a model of ¢ if | = .

Definition (satisfiable etc.)

A formula ¢ is called
e satisfiable if there is an interpretation / such that / = .
@ unsatisfiable if ¢ is not satisfiable.
o falsifiable if there is an interpretation / such that / j= ¢.
e valid (= a tautology) if I = ¢ for all interpretations /.
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Terminology (Side Note)

What does “p is true” mean?
@ not formally defined
@ implicit missing interpretation
e could be meant as “in the obvious interpretation”
o or as “in all possible interpretations” (tautology)

@ imprecise language ~» avoid
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Terminology

Definition (logical equivalence)

Formulas ¢ and 1) are called logically equivalent (¢ = )
if for all interpretations I: | |= ¢ iff | = 4.
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Equivalences

Logical Equivalences

Let v, %, and i be formulas.

o (pAY)=(vAp)and (pVih) = (V) (commutativity)
o ((pAY)An)=(pA(¥An))and

((evyY)Vvn)=(pV (¥ Vvn)) (associativity)
o ((eAY)Vvn)=((pVvn)A(@Vn)) (distributivity)
o (p—oY)=(—p V) ((—)-elimination)
o (pAY) = (V) (De Morgan)
o (V) =(—pA) (De Morgan)
@ =g (double negation)J

Commutativity and associativity are often used implicitly
~» We write (X1 A X2 A X3 A Xa) instead of (X1 A (X2 A (X3 A Xa)))
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Truth Tables

How to determine automatically if a given formula is
(un)satisfiable, falsifiable, valid?

~~ simple method: truth tables

example: Is ¢ = ((PV H) A =H) — P valid?

| P H] PVH ] (PVH)A=H) | (PVH)A-H)— P |

F|F F F T
FIT] T F T
T|F|| T T T
T(T| T F T

| = ¢ for all interpretations | ~~ ¢ is valid.
o satisfiability, falsifiability, unsatisfiability?
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Normal Forms: Terminology

Definition (literal)
If P € X, then the formulas P and —P are called literals.

P is called positive literal, =P is called negative literal.

The complementary literal to P is =P and vice versa.
For a literal £, the complementary literal to £ is denoted with /.

Question: What is the difference between ¢ and —(?
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Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.
The empty clause L is also written as [.
Clauses consisting of only one literal are called unit clauses.

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.
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Normal Forms

Definition (normal forms)

A formula ¢ is in conjunctive normal form (CNF, clause form)
if ¢ is a conjunction of 0 or more clauses:

A formula ¢ is in disjunctive normal form (DNF)
if ¢ is a disjunction of 0 or more monomials:

/\ b

1 \j=1

80:

n mj
=

V.
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Normal Forms

For every propositional formula, there exists
a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF with equivalences

@ eliminate implications

(¢ = ¥)= (- V) ((—)-elimination)
@ move negations inside

(e AY) = (mp V) (De Morgan)

(e V) = (e A0) (De Morgan)

= (double negation)
© distribute V over A

((end)vn)=((eVvn) Ay Vn) (distributivity)
@ simplify trivial subformulas (T, 1) )

There are formulas ¢ for which every logically equivalent formula
in CNF and DNF is exponentially longer than ¢.
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Summary (1)

@ Propositional logic forms the basis for a general
representation of problems and knowledge.

@ Propositions (atomic formulas) are statements over the world
which cannot be divided further.

@ Propositional formulas combine atomic formulas
with =, A, V, — to more complex statements.

@ Interpretations determine which atomic formulas are true
and which ones are false.
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Summary (2)

@ important terminology:
e model
e satisfiable, unsatisfiable, falsifiable, valid
o logically equivalent
o different kinds of formulas:
e atomic formulas and literals
e clauses and monomials
e conjunctive normal form and disjunctive normal form
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