Foundations of Artificial Intelligence
 22. Constraint Satisfaction Problems: Introduction and Examples

Thomas Keller and Florian Pommerening

University of Basel
April 5, 2023

Classification

Classification:

Constraint Satisfaction Problems

environment:

- static vs. dynamic
- deterministic vs. non-deterministic vs. stochastic
- fully vs. partially vs. not observable
- discrete vs. continuous
- single-agent vs. multi-agent
problem solving method:
- problem-specific vs. general vs. learning

Special case of a pure search combinatorial optimization problem

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

- 22.-23. Introduction
- 22. Introduction and Examples
- 23. Constraint Networks
- 24.-26. Basic Algorithms
- 27.-28. Problem Structure

Introduction

Constraints

What is a Constraint?

a condition that every solution to a problem must satisfy

Examples: Where do constraints occur?

- mathematics: requirements on solutions of optimization problems (e.g., equations, inequalities)
- software testing: specification of invariants to check data consistency (e.g., assertions)
- databases: integrity constraints

Constraint Satisfaction Problems: Informally

Given:

- set of variables with corresponding domains
- set of constraints that the variables must satisfy
- most commonly binary, i.e., every constraint refers to two variables

Solution:

- assignment to the variables that satisfies all constraints

Examples

Examples

Examples

- 8 queens problem
- Latin squares
- Sudoku
- graph coloring
- satisfiability in propositional logic
more complex examples:
- systems of equations and inequalities
- database queries

Example: 8 Queens Problem (Reminder)

(reminder from previous two chapters)

8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?
- originally proposed in 1848
- variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count symmetric solutions (under rotation or reflection) as distinct.

8 Queens Problem: Example Solution

example solution for the 8 queens problem

Example: Latin Squares

Latin Squares

How can we

- build an $n \times n$ matrix with n symbols
- such that every symbol occurs exactly once in every row and every column?

$$
[1]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array}\right]
$$

There exist 12 different Latin squares of size 3, 576 of size 4, 161280 of size 5, ..., 5524751496156892842531225600 of size 9 .

Example: Sudoku

Sudoku

How can we

- completely fill an already partially filled 9×9 matrix with numbers between 1-9
- such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

25	3	9	
1	4		
4		2	
5	2		
	98	1	
4	3		
	36		72
7			
9			

Example: Sudoku

Sudoku

How can we

- completely fill an already partially filled 9×9 matrix with numbers between 1-9
- such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

2	5	8	7	3	6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

Example: Sudoku

Sudoku

How can we

- completely fill an already partially filled 9×9 matrix with numbers between 1-9
- such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

2	5	8	7	3	6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

relationship to Latin squares?

Sudoku: Trivia

- well-formed Sudokus have exactly one solution
- to achieve well-formedness, ≥ 17 cells must be filled already (McGuire et al., 2012)
- 6670903752021072936960 solutions
- only 5472730538 "non-symmetrical" solutions

Example: Graph Coloring

Graph Coloring

How can we

- color the vertices of a given graph using k colors
- such that two neighboring vertices never have the same color?
(The graph and k are problem parameters.)

Example: Graph Coloring

Graph Coloring

How can we

- color the vertices of a given graph using k colors
- such that two neighboring vertices never have the same color?
(The graph and k are problem parameters.)
NP-complete problem
- even for the special case of planar graphs and $k=3$
- easy for $k=2$ (also for general graphs)

Example: Graph Coloring

Graph Coloring

How can we

- color the vertices of a given graph using k colors
- such that two neighboring vertices never have the same color?
(The graph and k are problem parameters.)
NP-complete problem
- even for the special case of planar graphs and $k=3$
- easy for $k=2$ (also for general graphs)

Relationship to Sudoku?

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years
- solved by Appel and Haken in 1976: 4 colors suffice
- Appel and Haken reduced the problem to 1936 cases, which were then checked by computers
- first famous mathematical problem solved (partially) by computers
\rightsquigarrow led to controversy: is this a mathematical proof?

Numberphile video:

https://www.youtube.com/watch?v=NgbK43jB4rQ

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?
remarks:
- NP-complete (Cook 1971; Levin 1973)
- formulas expressed as clauses (instead of arbitrary propositional formulas) is no restriction
- clause length bounded by 3 would not be a restriction

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?
remarks:
- NP-complete (Cook 1971; Levin 1973)
- formulas expressed as clauses (instead of arbitrary propositional formulas) is no restriction
- clause length bounded by 3 would not be a restriction relationship to previous problems (e.g., Sudoku)?

Practical Applications

- There are thousands of practical applications of constraint satisfaction problems.
- This statement is true already for the satisfiability problem of propositional logic.
some examples:
- verification of hardware and software
- timetabling (e.g., generating time schedules, room assignments for university courses)
- assignment of frequency spectra (e.g., broadcasting, mobile phones)

Running Example

Small Math Puzzle (informal description)

- assign a value from $\{1,2,3,4\}$ to the variables w and y
- and from $\{1,2,3\}$ to x and z
- such that
- $w=2 x$,
- $w<z$ and
- $y>z$.

We will keep using this example to explain definitions and algorithms in the next chapters.

Summary

Summary

- constraint satisfaction:
- find assignment for a set of variables
- with given variable domains
- that satisfies a given set of constraints.
- examples:
- 8 queens problem
- Latin squares
- Sudoku
- graph coloring
- satisfiability in propositional logic
- many practical applications

