Foundations of Artificial Intelligence 20. Combinatorial Optimization: Introduction and Hill-Climbing

Thomas Keller and Florian Pommerening

University of Basel

April 3, 2023

Combinatorial Optimization

Introduction

previous chapters: classical state-space search

- find action sequence (path) from initial to goal state
- difficulty: large number of states ("state explosion")

next chapters: combinatorial optimization

 \rightsquigarrow similar scenario, but:

- no actions or transitions
- don't search for path, but for configuration ("state") with low cost/high quality

Combinatorial Optimization: Example

Example: Nurse Scheduling Problem

- find a schedule for a hospital
- satisfy hard constraints
 - labor laws, hospital policies, ...
 - nurses working night shifts should not work early next day
 - have enough nurses with required skills present at all times
- maximize satisfaction of soft constraints
 - individual preferences, reduce overtime, fair distribution,

Summary 00

Combinatorial Optimization: Example

Example: Nurse Scheduling Problem

- find a schedule for a hospital
- satisfy hard constraints
 - labor laws, hospital policies, ...
 - nurses working night shifts should not work early next day
 - have enough nurses with required skills present at all times
- maximize satisfaction of soft constraints
 - $\bullet\,$ individual preferences, reduce overtime, fair distribution, \ldots

We are interested in a (high-quality) solution, not a path to a goal.

Combinatorial Optimization

Example 0000 Local Search: Hill Climbing

Summary 00

Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization

- 20. Introduction and Hill-Climbing
- 21. Advanced Techniques

Summary 00

Combinatorial Optimization Problems

Definition (combinatorial optimization problem)

- A combinatorial optimization problem (COP) is given by a tuple $\langle C, S, opt, v \rangle$ consisting of:
 - a finite set of (solution) candidates C
 - a finite set of solutions $S \subseteq C$
 - an objective sense $opt \in \{\min, \max\}$
 - an objective function $v: S \to \mathbb{R}$

Remarks:

- "problem" here in another sense (= "instance") than commonly used in computer science
- practically interesting COPs usually have too many candidates to enumerate explicitly

Optimal Solutions

Definition (optimal)

Let $\mathcal{O} = \langle C, S, opt, v \rangle$ be a COP.

The optimal solution quality v^* of \mathcal{O} is defined as

$$v^* = \begin{cases} \min_{c \in S} v(c) & \text{if } opt = \min \\ \max_{c \in S} v(c) & \text{if } opt = \max \end{cases}$$

(v^* is undefined if $S = \emptyset$.) A solution s of \mathcal{O} is called optimal if $v(s) = v^*$.

Combinatorial Optimization

The basic algorithmic problem we want to solve:

```
Combinatorial Optimization
```

Find a solution of good (ideally, optimal) quality for a combinatorial optimization problem \mathcal{O} or prove that no solution exists.

Good here means close to v^* (the closer, the better).

Relevance and Hardness

- There is a huge number of practically important combinatorial optimization problems.
- Solving these is a central focus of operations research.
- Many important combinatorial optimization problems are NP-complete.
- Most "classical" NP-complete problems can be formulated as combinatorial optimization problems.
- → Examples: TSP, VERTEXCOVER, CLIQUE, BINPACKING, PARTITION

Search vs. Optimization

Combinatorial optimization problems have

- a search aspect (among all candidates *C*, find a solution from the set *S*) and
- an optimization aspect (among all solutions in *S*, find one of high quality).

Pure Search/Optimization Problems

Important special cases arise when one of the two aspects is trivial:

- pure search problems:
 - all solutions are of equal quality
 - difficulty is in finding a solution at all
 - formally: v is a constant function (e.g., constant 0); opt can be chosen arbitrarily (does not matter)
- pure optimization problems:
 - all candidates are solutions
 - difficulty is in finding solutions of high quality
 - formally: S = C

Example

Example: 8 Queens Problem

8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?
- originally proposed in 1848
- variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count symmetric solutions (under rotation or reflection) as distinct.

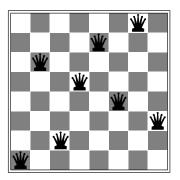
Combinatorial Optimization

Example 0000 Local Search: Hill Climbing

Summary 00

Example: 8 Queens Problem

Problem: Place 8 queens on a chess board such that no two queens threaten each other.



Is this candidate a solution?

Formally: 8 Queens Problem

How can we formalize the problem?

idea:

- obviously there must be exactly one queen in each file ("column")
- describe candidates as 8-tuples, where the *i*-th entry denotes the rank ("row") of the queen in the *i*-th file

formally: $\mathcal{O} = \langle C, S, opt, v \rangle$ with

•
$$C = \{1, \ldots, 8\}^8$$

•
$$S = \{ \langle r_1, \ldots, r_8 \rangle \mid \forall 1 \leq i < j \leq 8 : r_i \neq r_j \land |r_i - r_j| \neq |i - j| \}$$

• v constant, opt irrelevant (pure search problem)

Example 0000 Local Search: Hill Climbing

Summary 00

Local Search: Hill Climbing

Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

- formulation as classical state-space search
- formulation as constraint network
- formulation as logical satisfiability problem
- formulation as mathematical optimization problem (LP/IP)
- Iocal search

Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

- formulation as classical state-space search
 ~> previous chapters
- \bullet formulation as constraint network \rightsquigarrow next session
- formulation as logical satisfiability problem \rightsquigarrow later
- formulation as mathematical optimization problem (LP/IP)
 → not in this course
- local search \rightsquigarrow this and next chapter

Search Methods for Combinatorial Optimization

- main ideas of heuristic search applicable for COPs
 → states ≈ candidates
- main difference: no "actions" in problem definition
 - instead, we (as algorithm designers) can choose which candidates to consider neighbors
 - definition of neighborhood critical aspect of designing good algorithms for a given COP
- "path to goal" irrelevant to the user
 - no path costs, parents or generating actions
 - \rightsquigarrow no search nodes needed

Local Search: Idea

main ideas of local search algorithms for COPs:

- heuristic h estimates quality of candidates
 - for pure optimization: often objective function v itself
 - for pure search: often distance estimate to closest solution (as in state-space search)
- do not remember paths, only candidates
- often only one current candidate → very memory-efficient (however, not complete or optimal)
- often initialization with random candidate
- iterative improvement by hill climbing

Example 0000 Local Search: Hill Climbing

Hill Climbing

Hill Climbing (for Maximization Problems)

```
current := a random candidate
```

repeat:

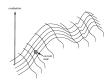
next := a neighbor of *current* with maximum *h* value if $h(next) \le h(current)$:

return current

current := *next*

Remarks:

- search as walk "uphill" in a landscape defined by the neighborhood relation
- heuristic values define "height" of terrain
- analogous algorithm for minimization problems also traditionally called "hill climbing" even though the metaphor does not fully fit



Properties of Hill Climbing

- always terminates (Why?)
- no guarantee that result is a solution
- if result is a solution, it is locally optimal w.r.t. *h*, but no global quality guarantees

Summary 00

Example: 8 Queens Problem

Problem: Place 8 queens on a chess board such that no two queens threaten each other. possible heuristic: no. of pairs of queens threatening each other (formalization as minimization problem)

possible neighborhood: move one queen within its file

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	Ŵ	13	16	13	16
Ŵ	14	17	15	Ŵ	14	16	16
17	Ŵ	16	18	15	Ŵ	15	Ŵ
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

Performance of Hill Climbing for 8 Queens Problem

- problem has 8⁸ ≈ 17 million candidates (reminder: 92 solutions among these)
- after random initialization, hill climbing finds a solution in around 14% of the cases
- only around 3-4 steps on average!

Summary

Summary

combinatorial optimization problems:

- find solution of good quality (objective value) among many candidates
- special cases:
 - pure search problems
 - pure optimization problems
- differences to state-space search: no actions, paths etc.; only "state" matters

often solved via local search:

• consider one candidate (or a few) at a time; try to improve it iteratively