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State-Space Search: Overview

Chapter overview: state-space search

▶ 5.–7. Foundations

▶ 8.–12. Basic Algorithms
▶ 13.–19. Heuristic Algorithms

▶ 13. Heuristics
▶ 14. Analysis of Heuristics
▶ 15. Best-first Graph Search
▶ 16. Greedy Best-first Search, A∗, Weighted A∗

▶ 17. IDA∗

▶ 18. Properties of A∗, Part I
▶ 19. Properties of A∗, Part II
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19.1 Introduction
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Optimality of A∗ without Reopening

We now study A∗ without reopening.

▶ For A∗ without reopening, admissibility and consistency
together guarantee optimality.

▶ We prove this on the following slides,
again beginning with a basic lemma.

▶ Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)
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Reminder: A∗ without Reopening

reminder: A∗ without reopening

A∗ without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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19.2 Monotonicity Lemma
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A∗: Monotonicity Lemma (1)

Lemma (monotonicity of A∗ with consistent heuristics)

Consider A∗ with a consistent heuristic.

Then:

1 If n′ is a child node of n, then f (n′) ≥ f (n).

2 On all paths generated by A∗, f values are non-decreasing.

3 The sequence of f values of the nodes expanded by A∗

is non-decreasing.
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A∗: Monotonicity Lemma (2)

Proof.
on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

▶ by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

▶ by definition of g : g(n′) = g(n) + cost(a)

▶ by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .
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A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

▶ Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

▶ to show: at the end of the iteration
the minimal f value in open is at least fb.

▶ We must consider the operations modifying open:
open.pop min and open.insert.

▶ open.pop min can never decrease the minimal f value
in open (only potentially increase it).

▶ The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.
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19.3 Optimality of A∗ without
Reopening
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Optimality of A∗ without Reopening

Theorem (optimality of A∗ without reopening)

A∗ without reopening is optimal when using
an admissible and consistent heuristic.

Proof.
From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

⇝ If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

⇝ If we allowed reopening, it would never happen.

⇝ With consistent heuristics, A∗ without reopening
behaves the same way as A∗ with reopening.

The result follows because A∗ with reopening
and admissible heuristics is optimal.
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19.4 Time Complexity of A∗
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Time Complexity of A∗ (1)

What is the time complexity of A∗?

▶ depends strongly on the quality of the heuristic
▶ an extreme case: h = 0 for all states

⇝ A∗ identical to uniform cost search

▶ another extreme case: h = h∗ and cost(a) > 0
for all actions a

⇝ A∗ only expands nodes along an optimal solution
⇝ O(ℓ∗) expanded nodes, O(ℓ∗b) generated nodes, where

▶ ℓ∗: length of the found optimal solution
▶ b: branching factor
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Time Complexity of A∗ (2)

more precise analysis:

▶ dependency of the runtime of A∗ on heuristic error

example:

▶ unit cost problems with

▶ constant branching factor and

▶ constant absolute error: |h∗(s)− h(s)| ≤ c for all s ∈ S

time complexity:

▶ if state space is a tree: time complexity of A∗ grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

▶ general search spaces: runtime of A∗ grows
exponentially in solution length (Helmert & Röger 2008)
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Overhead of Reopening

How does reopening affect runtime?

▶ For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

▶ exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A∗.
(⇝ exponentially worse than uniform cost search)
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Practical Evaluation of A∗ (1)

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

h1: number of tiles in wrong cell (misplaced tiles)
h2: sum of distances of tiles to their goal cell (Manhattan distance)
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Practical Evaluation of A∗ (2)

▶ experiments with random initial states,
generated by random walk from goal state

▶ entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph A∗ with h1 A∗ with h2

10 63 15 15

20 1,052 28 27

30 7,546 77 42

40 72,768 227 64

50 359,298 422 83

60 > 1,000,000 7,100 307

70 > 1,000,000 12,769 377

80 > 1,000,000 62,583 849

90 > 1,000,000 162,035 1,522

100 > 1,000,000 690,497 4,964
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19.5 Summary
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Summary

▶ A∗ without reopening using an admissible and consistent
heuristic is optimal

▶ key property monotonicity lemma (with consistent heuristics):
▶ f values never decrease along paths considered by A∗

▶ sequence of f values of expanded nodes is non-decreasing

▶ time complexity depends on heuristic and shape of state space
▶ precise details complex and depend on many aspects
▶ reopening increases runtime exponentially in degenerate cases,

but usually negligible overhead
▶ small improvements in heuristic values often

lead to exponential improvements in runtime
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