

Thomas Keller and Florian Pommerening

University of Basel

March 29, 2023

March 29, 2023 1 / 20

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

Foundations of Artificial Intelligence March 29, 2023 — 19. State-Space Search: Properties of A*, Part II		
19.1 Introduction		
19.2 Monotonicity Lemma		
19.3 Optimality of A* without Reopening		
19.4 Time Complexity of A*		
19.5 Summary		
Keller & F. Pommerening (University of B Foundations of Artificial Intelligence	March 29. 2023	2 / 20

19. State-Space Search: Properties of A^* , Part II

Introduction

19.1 Introduction

Reminder: A* without Reopening

reminder: A* without reopening

open := new MinHeap ordered by $\langle t, h \rangle$	
if $h(init()) < \infty$:	
<i>open</i> .insert(make_root_node())	
<i>closed</i> := new HashSet	
while not open.is_empty():	
n := open.pop_min()	
if <i>n</i> .state \notin <i>closed</i> :	
closed.insert(n)	
if is_goal(<i>n</i> .state):	
<pre>return extract_path(n)</pre>	
for each $\langle a, s' \rangle \in \text{succ}(n.\text{state})$:	
if $h(s') < \infty$:	
$n' := make_node(n, a, s')$	
open.insert(n')	
roturn unsolvable	

Ρ	roof (continued).
0	n 3:
	Let f _b be the minimal f value in open
	at the beginning of a while loop iteration in A*.
	Let <i>n</i> be the removed node with $f(n) = f_b$.
	to show: at the end of the iteration
	the minimal f value in <i>open</i> is at least $f_{\rm b}$.
	We must consider the operations modifying open:
	open.pop_min and open.insert.
	open pop min can never decrease the minimal f value
	in <i>open</i> (only potentially increase it).
	The nodes n' added with open incert are shildren of n
	Fine nodes n added with open.Insert are children of n

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

10 / 20

Monotonicity Lemma

19. State-Space Search: Properties of A*, Part II

19. State-Space Search: Properties of A*, Part II

Optimality of A* without Reopening

March 29, 2023

Optimality of A^{*} without Reopening

Theorem (optimality of A* without reopening)

A* without reopening is optimal when using

an admissible and consistent heuristic.

Proof.

From the monotonicity lemma, the sequence of f values of nodes removed from the open list is non-decreasing.

- \rightsquigarrow If multiple nodes with the same state *s* are removed from the open list, then their *g* values are non-decreasing.
- \rightsquigarrow If we allowed reopening, it would never happen.
- \rightsquigarrow With consistent heuristics, A* without reopening behaves the same way as A* with reopening.

The result follows because A^* with reopening and admissible heuristics is optimal.

19. State-Space Search: Properties of A*, Part II

Optimality of A* without Reopening

Time Complexity of A^* (1)

19. State-Space Search: Properties of A*, Part II

T. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

19. State-Space Search: Properties of $\mathsf{A}^*,$ Part II

Time Complexity of A*

13 / 20

March 29, 2023

Time Complexity of A^* (2)

more precise analysis:

dependency of the runtime of A* on heuristic error

example:

- unit cost problems with
- constant branching factor and
- ▶ constant absolute error: $|h^*(s) h(s)| \le c$ for all $s \in S$

time complexity:

- if state space is a tree: time complexity of A* grows linearly in solution length (Pohl 1969; Gaschnig 1977)
- general search spaces: runtime of A* grows exponentially in solution length (Helmert & Röger 2008)

19. State-Space Search: Properties of A*, Part II
Overhead of Reopening
How does reopening affect runtime?
For most practical state spaces and inconsistent admissible heuristics, the number of reopened nodes is negligible.
exceptions exist: Martelli (1977) constructed state spaces with *n* states where exponentially many (in *n*) node reopenings occur in A*. (~ exponentially worse than uniform cost search)

19.5 Summary

Practical Evaluation of A^* (2)

19. State-Space Search: Properties of A*, Part II

- experiments with random initial states, generated by random walk from goal state
- entries show median of number of generated nodes for 101 random walks of the same length N

	generated nodes				
Ν	BFS-Graph	A^* with h_1	A^* with h_2		
10	63	15	15		
20	1,052	28	27		
30	7,546	77	42		
40	72,768	227	64		
50	359,298	422	83		
60	> 1,000,000	7,100	307		
70	> 1,000,000	12,769	377		
80	> 1,000,000	62,583	849		
90	> 1,000,000	162,035	1,522		
100	> 1,000,000	690,497	4,964		

19. State-Space Search: Properties of $\mathsf{A}^*,$ Part II

Summary

T. Keller & F. Pon

- A* without reopening using an admissible and consistent heuristic is optimal
- key property monotonicity lemma (with consistent heuristics):
 - f values never decrease along paths considered by A*
 - sequence of f values of expanded nodes is non-decreasing
- time complexity depends on heuristic and shape of state space
 - precise details complex and depend on many aspects
 - reopening increases runtime exponentially in degenerate cases, but usually negligible overhead
 - small improvements in heuristic values often lead to exponential improvements in runtime

18 / 20

Summar