Foundations of Artificial Intelligence
17. State-Space Search: IDA*

Thomas Keller and Florian Pommerening
University of Basel
March 27, 2023

State-Space Search: Overview

Chapter overview: state-space search

- 5.-7. Foundations
- 8.-12. Basic Algorithms
- 13.-19. Heuristic Algorithms
- 13. Heuristics
- 14. Analysis of Heuristics
- 15. Best-first Graph Search
- 16. Greedy Best-first Search, A*, Weighted A*
- 17. IDA*
- 18. Properties of A^{*}, Part I
- 19. Properties of A^{*}, Part II

Foundations of Artificial Intelligence
March 27, 2023 - 17. State-Space Search: IDA*
17.1 IDA*: Idea
17.2 IDA*: Algorithm
17.3 IDA*: Properties
17.4 Summary
T. Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

March 27, 2023 2/19

17.2 IDA*: Algorithm

The main drawback of the presented best-first graph search algorithms is their space complexity.
Idea: use the concepts of iterative-deepening DFS

- bounded depth-first search with increasing bounds
- instead of depth we bound f
(in this chapter $f(n):=g(n)+h\left(n\right.$.state) as in A^{*})
$\rightsquigarrow I D A *^{*}$ (iterative-deepening A^{*})
- tree search, unlike the previous best-first search algorithms

First Attempt: IDA* Main Function
first attempt: iterative deepening A * (IDA*)
IDA* (First Attempt)
for f_{-}bound $\in\{0,1,2, \ldots\}$:
solution := f_bounded_search(init(), 0,f_bound)
if solution \neq none:
return solution
function f_bounded_search $\left(s, g, f_{-}\right.$bound $)$:
if $g+h(s)>f_{-}$bound:

return none

if is_goal(s):
return \rangle
for each $\left\langle a, s^{\prime}\right\rangle \in \operatorname{succ}(s)$:
solution := f_bounded_search $\left(s^{\prime}, g+\operatorname{cost}(a), f_{-}\right.$bound $)$
if solution \neq none:
solution.push_front(a)

return solution

return none
T. Keller \& F. Pommerening (University of B Foundations of Artificial Intelligence

- The pseudo-code can be rewritten to be even more similar to our IDDFS pseudo-code. However, this would make our next modification more complicated.
- The algorithm follows the same principles as IDDFS, but takes path costs and heuristic information into account.
- For unit-cost state spaces and the trivial heuristic $h: s \mapsto 0$ for all states s, it behaves identically to IDDFS.
- For general state spaces, there is a problem with this first attempt, however.

Growing the f Bound

Setting the Next f Bound

idea: let the f-bounded search compute the next sensible f bound

- Start with $h($ init()), the smallest f bound
that results in a non-empty search tree.
- In every round, increase the f bound to the smallest value that ensures that in the next round at least one additional path will be considered by the search.
\rightsquigarrow f_bounded_search now returns two values:
- the next f bound that would include at least one new node in the search tree (∞ if no such bound exists; none if a solution was found), and
- the solution that was found (or none).
final algorithm：iterative deepening A^{*}（IDA＊）

IDA＊

f＿bound $=h($ init（）$)$
while f_{-}bound $\neq \infty$ ：
$\left\langle f_{-}\right.$bound，solution $\rangle=\mathrm{f}_{-}$bounded＿search（init（）， $0, f_{-}$bound）
if solution \neq none：
return solution
return unsolvable
function f＿bounded＿search $\left(s, g, f_{-} b o u n d\right)$ ：
if $g+h(s)>f_{-}$bound：
return $\langle g+h(s)$ ，none \rangle
if is＿goal（ s ）：
return \langle none，$\rangle\rangle$
new＿bound $:=\infty$
for each $\left\langle a, s^{\prime}\right\rangle \in \operatorname{succ}(s)$ ：
\langle child＿bound，solution $\rangle:=$ f＿bounded＿search $\left(s^{\prime}, g+\operatorname{cost}(a), f_{-} b o u n d\right)$ if solution \neq none：
solution．push＿front（a）
return \langle none，solution〉
new＿bound $:=\min ($ new＿bound，child＿bound）
return 〈new＿bound，none〉

IDA＊：Properties			
Inherits important properties of A^{*} and depth－first search： semi－complete if h safe and $\operatorname{cost}(a)>0$ for all actions a optimal if h admissible space complexity $O(\ell b)$ ，where ℓ ：length of longest generated path （for unit cost problems：bounded by optimal solution cost） b ：branching factor			
T．Keller \＆F．Pommerening（University of B	Foundations of Artificial Inteligence	March 27，2023	16／19

IDA*: Discussion
\rightarrow compared to A^{*} potentially considerable overhead because no duplicates are detected
\rightsquigarrow exponentially slower in many state spaces
\rightsquigarrow often combined with partial duplicate elimination (cycle detection, transposition tables)

- overhead due to iterative increases of f bound often negligible, but not always
- especially problematic if action costs vary a lot: then it can easily happen that each new f bound only considers a small number of new paths

17.4 Summary

