
Foundations of Artificial Intelligence
11. State-Space Search: Uniform Cost Search

Thomas Keller and Florian Pommerening

University of Basel

March 15, 2023

Introduction Algorithm Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

8. Data Structures for Search Algorithms
9. Tree Search and Graph Search
10. Breadth-first Search
11. Uniform Cost Search
12. Depth-first Search and Iterative Deepening

13.–19. Heuristic Algorithms

Introduction Algorithm Properties Summary

Introduction

Introduction Algorithm Properties Summary

Uniform Cost Search

breadth-first search optimal if all action costs equal

otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 consider bounded inc-and-square problem
with cost(sqr) = 3

solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)
but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

implementation: priority queue (min-heap) for open list

Introduction Algorithm Properties Summary

Uniform Cost Search

breadth-first search optimal if all action costs equal

otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 consider bounded inc-and-square problem
with cost(sqr) = 3

solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)
but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

implementation: priority queue (min-heap) for open list

Introduction Algorithm Properties Summary

Algorithm

Introduction Algorithm Properties Summary

Reminder: Generic Graph Search Algorithm

reminder from Chapter 9:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Algorithm Properties Summary

Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Algorithm Properties Summary

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

as in BFS-Graph, a set is sufficient for the closed list

a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

identical to Dijkstra’s algorithm for shortest paths

for both: variants with/without delayed duplicate elimination

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

11

11222

in
c sqrin
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

1

1

1

1

2

22

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

12

2

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

122

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Uniform Cost Search: Improvements

possible improvements:

if action costs are small integers,
bucket heaps often more efficient

additional early duplicate tests for generated nodes
can reduce memory requirements

can be beneficial or detrimental for runtime
must be careful to keep shorter path to duplicate state

Introduction Algorithm Properties Summary

Properties

Introduction Algorithm Properties Summary

Completeness and Optimality

properties of uniform cost search:

uniform cost search is complete (Why?)

uniform cost search is optimal (Why?)

Introduction Algorithm Properties Summary

Time and Space Complexity

properties of uniform cost search:

Time complexity depends on distribution of action costs
(no simple and accurate bounds).

Let ε := mina∈A cost(a) and consider the case ε > 0.
Let c∗ be the optimal solution cost.
Let b be the branching factor and consider the case b ≥ 2.
Then the time complexity is at most O(b⌊c

∗/ε⌋+1). (Why?)
often a very weak upper bound

space complexity = time complexity

Introduction Algorithm Properties Summary

Summary

Introduction Algorithm Properties Summary

Summary

uniform cost search: expand nodes in order of ascending path costs

usually as a graph search

then corresponds to Dijkstra’s algorithm

complete and optimal

	Introduction
	

	Algorithm
	

	Properties
	

	Summary
	

