

Thomas Keller and Florian Pommerening

University of Basel

March 8, 2023

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

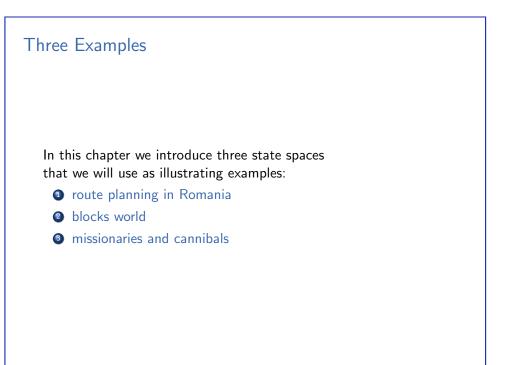
<section-header><list-item><list-item><list-item><list-item>

 State-Space Search: Overview

 Chapter overview: state-space search

 • 5.-7. Foundations

 • 5. State Spaces


 • 6. Representation of State Spaces

 • 7. Examples of State Spaces

 • 8.-12. Basic Algorithms

 • 13.-19. Heuristic Algorithms

Foundations of Artificial Intelligence March 8, 2023 — 7. State-Space Search: Examples of State Spaces		
7.1 Route Planning in Romania		
7.2 Blocks World		
7.3 Missionaries and Cannibals		
7.4 Summary		
Keller & F. Pommerening (University of B Foundations of Artificial Intelligence	March 8, 2023	2 / 20

March 8, 2023 1 / 20

7.1 Route Planning in Romania

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

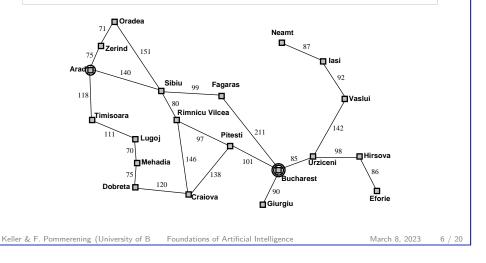
7. State-Space Search: Examples of State Spaces

Route Planning in Romania

March 8, 2023

5 / 20

Romania Formally


State Space Route Planning in Romania

- states S: {arad, bucharest, craiova, ..., zerind}
- actions A: $move_{c,c'}$ for any two cities c and c' connected by a single road segment
- ▶ action costs *cost*: see figure, e.g., *cost*(*move*_{iasi,vaslui}) = 92
- transitions $T: s \xrightarrow{a} s'$ iff $a = move_{s s'}$
- \blacktriangleright initial state: $s_l = arad$
- goal states: $S_{\star} = \{ \text{bucharest} \}$

Route Planning in Romania

Setting: Route Planning in Romania

We are on holiday in Romania and are currently located in Arad. Our flight home leaves from Bucharest. How to get there?

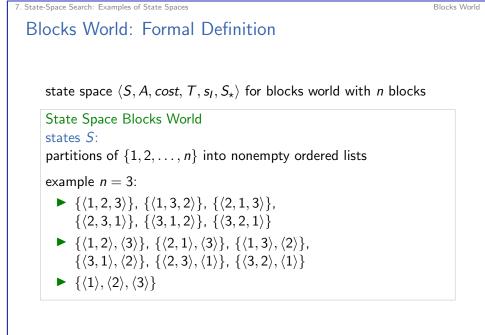
7. State-Space Search: Examples of State Spaces

Blocks World

Blocks World

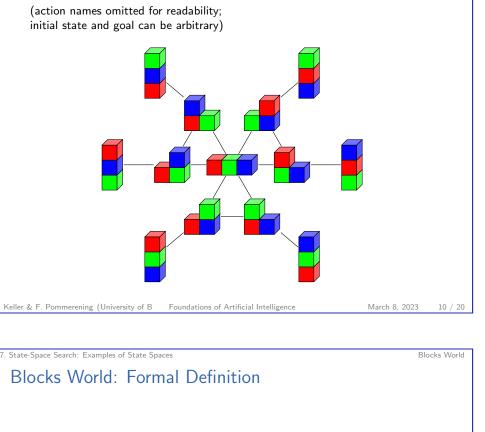
Blocks world is a traditional example problem in AI.

Setting: Blocks World


- Colored blocks lie on a table.
- They can be stacked into towers, moving one block at a time.
- Our task is to create a given goal configuration.

Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

Blocks World


9 / 20

March 8, 2023

7. State-Space Search: Examples of State Spaces

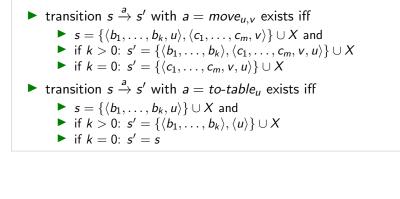
Example: Blocks World with Three Blocks

state space $(S, A, cost, T, s_I, S_{\star})$ for blocks world with *n* blocks

State Space Blocks World actions A:

- {*move*_{*u*,*v*} | $u, v \in \{1, ..., n\}$ with $u \neq v$ }
 - \blacktriangleright move block *u* onto block *v*.
 - both must be uppermost blocks in their towers
- ▶ {*to-table*_{*u*} | $u \in \{1, ..., n\}$ }
 - move block u onto the table (\rightsquigarrow forming a new tower)
 - must be uppermost block in its tower

action costs cost:


cost(a) = 1 for all actions $a \in A$

Blocks World: Formal Definition

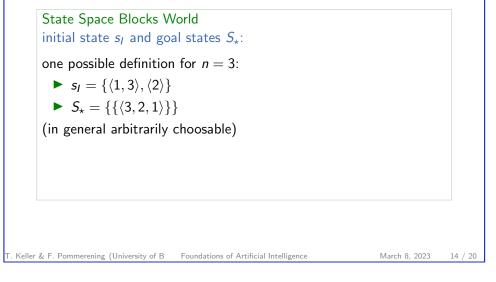
state space $\langle S, A, cost, T, s_I, S_{\star} \rangle$ for blocks world with *n* blocks

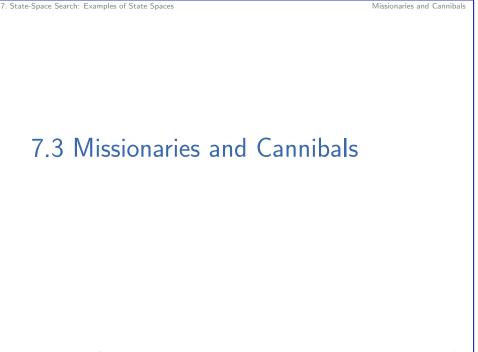
State Space Blocks World transitions:

. Keller & F. Pommerening (University of B Foundations of Artificial Intelligence

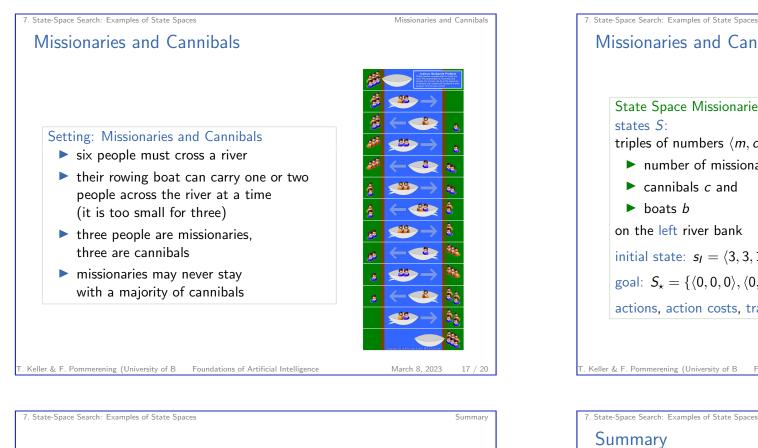
7. State-Space Search: Examples of State Spaces **Blocks World: Properties** blocks blocks states states 58941091 1 10 2 824073141 3 11 3 13 12 12470162233 73 13 202976401213 4 5 501 14 3535017524403 4051 15 65573803186921 37633 16 1290434218669921 394353 17 26846616451246353 9 4596553 18 588633468315403843 ▶ For every given initial and goal state with *n* blocks, simple algorithms find a solution in time O(n). (How?) Finding optimal solutions is NP-complete (with a compact problem description)

March 8, 2023


13 / 20


Blocks World

Blocks World

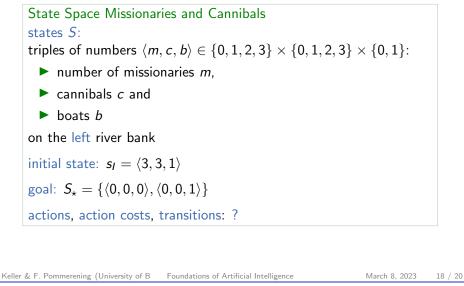

Blocks World: Formal Definition

state space $\langle S, A, \textit{cost}, T, s_l, S_\star
angle$ for blocks world with *n* blocks

Blocks World

7.4 Summary

illustrating examples for state spaces: route planning in Romania:


missionaries and cannibals:

traditional example problem in AI

blocks world:

Summar

Missionaries and Cannibals Formally

small example of explicitly representable state space

number of states explodes quickly as n grows

traditional brain teaser with small state space (32 states, of which many unreachable)

▶ family of tasks where *n* blocks on a table must be rearranged

Missionaries and Cannibals