Foundations of Artificial Intelligence 3. Introduction: Rational Agents

Thomas Keller and Florian Pommerening

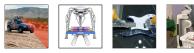
University of Basel

February 22, 2023

Introduction: Overview

Chapter overview: introduction

- 1. What is Artificial Intelligence?
- 2. Al Past and Present
- 3. Rational Agents
- 4. Environments and Problem Solving Methods


Rationality 0000000

Systematic AI Framework

Systematic AI Framework

so far we have seen that:

• Al systems applied to wide variety of challenges

Example 0000000 Rationality 0000000 Summary

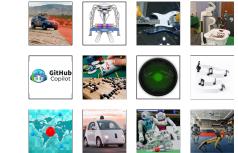
Systematic AI Framework

so far we have seen that:

• Al systems act rationally

Al systems applied to wide variety of challenges

Example 0000000 Rationality 0000000 Summary


Systematic AI Framework

so far we have seen that:

• Al systems act rationally

• Al systems applied to wide variety of challenges

now: describe a systematic framework that

Rationality

Systematic AI Framework

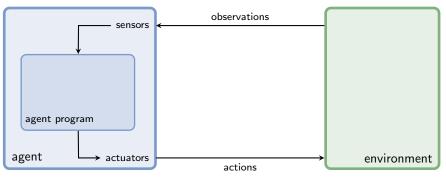
so far we have seen that:

• Al systems act rationally

 Al systems applied to wide variety of challenges

now: describe a systematic framework that

• captures this diversity of challenges


Example 0000000 Rationality 0000000 Summary 000

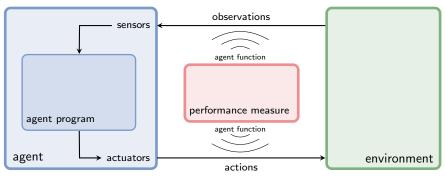
Systematic AI Framework

so far we have seen that:

• Al systems act rationally

• Al systems applied to wide variety of challenges

now: describe a systematic framework that

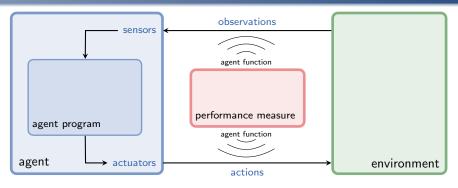

- captures this diversity of challenges
- includes an entity that is acting in the environment

Systematic AI Framework

so far we have seen that:

• Al systems act rationally

• Al systems applied to wide variety of challenges

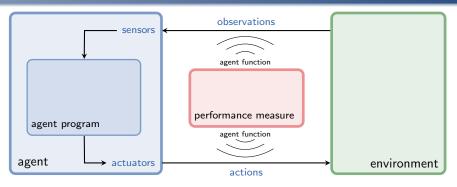

now: describe a systematic framework that

- captures this diversity of challenges
- includes an entity that is acting in the environment
- determines if the agent acts rationally in the environment

Systematic	AI	Framework	
0000			

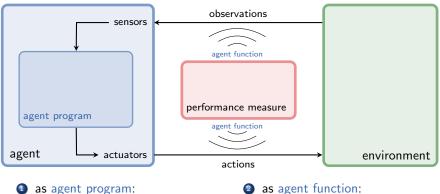
Rationalit

Agent-Environment Interaction



- sensors: phyisical entities that allow the agent to observe
- observation: data perceived by the agent's sensors
- actuators: phyisical entities that allow the agent to act
- action: abstract concept that affects the state of the environment

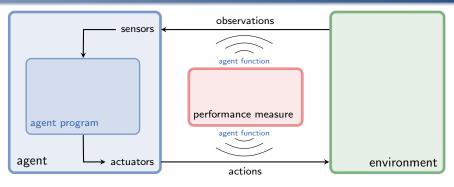
Systematic	AI	Framework	
0000			


Rationalit

Agent-Environment Interaction

- sensors and actuators are not relevant for the course (→ typically covered in courses on robotics)
- observations and actions describe the agent's capabilities (the agent model)

Formalizing an Agent's Behavior

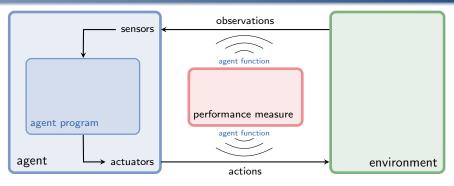


as agent program:

internal representation

- external characterization
- specifics possibly unknown to outside

Formalizing an Agent's Behavior



as agent program:

- internal representation
- specifics possibly unknown to outside
- takes observation as input
- outputs an action

- as agent function:
- external characterization
- maps sequence of observations to (probability distribution over) actions

Formalizing an Agent's Behavior

1 as agent program:

- internal representation
- specifics possibly unknown to outside
- takes observation as input
- outputs an action

- as agent function:
- external characterization
- maps sequence of observations to (probability distribution over) actions
- abstract mathematical formalization
- computed on physical machine (the agent architecture)

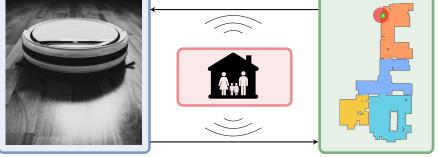
Rationality 0000000 Summary 000

Example

Rationality

Vacuum Domain

Example 0000000 Rationality 0000000 Summary


Vacuum Agent: Sensors and Actuators

• sensors: cliff sensors, bump sensors, wall sensors, state of charge sensor, WiFi module

• actuators: wheels, cleaning system

 observations: current location, cleanness of current room state of battery charge, presence of humans

• actions: move-to-next-room, move-to-base, vacuum, wait

Example 0000000 Rationalit

Summary 000

Vacuum Agent: Agent Program

1 **def** vacuum-agent([*cleanness*, *owner-present*, *battery*]):

- 2 if battery $\leq 10\%$: return move-to-base
- 3 **else if** *owner-present* = True: **return** *move-to-next-room*
- 4 **else if** *cleanness* = dirty: **return** *vacuum*
- 5 else: return move-to-next-room

Example 0000000

Rationality 0000000

Vacuum Domain: Agent Function

observation sequence	action
$\langle [clean, False, 100\%] \rangle$	move-to-next-room
$\langle [dirty, False, 100\%] \rangle$	vacuum
$\langle [clean, True, 100\%] \rangle$	move-to-next-room
····	
\langle [clean, False, 100%], [clean, False, 90%] \rangle	move-to-next-room
([clean, False, 100%], [dirty, False, 90%])	vacuum

Example 000000 Rationality 0000000 Summary

Vacuum Domain: Performance Measure

potential influences on performance measure:

- cleanliness
- times vacuum-cleaned
- distance travelled

- safety
- energy consumption
- disturbance of owners

Rationality 0000000

Summary 000

Rationality

Example 0000000 Rationality

Summary 000

Evaluating Agent Functions

What is the right agent function?

rationality of an agent depends on performance measure (often: utility, reward, cost) and environment

Perfect Rationality

- for each possible observation sequence
- select an action which maximizes*
- expected value of future performance
- given available information on observation history
- and environment

*sometimes minimize, e.g. in case of costs

Summary 000

Perfect Rationality of Our Vacuum Agent

Is our vacuum agent perfectly rational?

Perfect Rationality of Our Vacuum Agent

Is our vacuum agent perfectly rational?

depends on performance measure and environment, e.g.:

- Do actions reliably have the desired effect?
- Do we know the initial situation?
- Can new dirt be produced while the agent is acting?

Example 0000000 Rationality 0000●00 Summary 000

Performance Measure

• usually specified by developer

Rationality 0000000 Summary 000

Performance Measure

- usually specified by developer
- sometimes clear, sometimes not so clear

Rationality 0000000 Summary 000

Performance Measure

- usually specified by developer
- sometimes clear, sometimes not so clear
- significant impact on
 - desired behavior
 - difficulty of problem

Perfect Rationality of Our Vacuum Agent

consider performance measure:

ullet +1 utility for cleaning a dirty room

consider environment:

- actions and observations reliable
- world only changes through actions of the agent

our vacuum agent is perfectly rational

Perfect Rationality of Our Vacuum Agent

consider performance measure:

 $\bullet\ -1$ utility for each dirty room in each step

consider environment:

- actions and observations reliable
- world only changes through actions of the agent

our vacuum agent is not perfectly rational

Perfect Rationality of Our Vacuum Agent

consider performance measure:

 $\bullet\ -1$ utility for each dirty room in each step

consider environment:

- actions and observations reliable
- non-zero probability that yellow room becomes dirty

our vacuum agent is not perfectly rational

Rationality: Discussion

- perfect rationality \neq omniscience
 - incomplete information (due to limited observations) reduces achievable utility
- perfect rationality \neq perfect prediction of future
 - uncertain behavior of environment (e.g., stochastic action effects) reduces achievable utility
- perfect rationality is rarely achievable
 - limited computational power ~> bounded rationality

Rationality 0000000 Summary •00

Summary

common metaphor for AI systems: rational agents

agent interacts with environment:

- sensors perceive observations about state of the environment
- actuators perform actions modifying the environment
- formally: agent function maps observation sequences to actions
- reflexive agent: agent function only based on last observation

rational agents:

- try to maximize performance measure (utility)
- perfect rationality: achieve maximal utility in expectation given available information
- for "interesting" problems rarely achievable

 → bounded rationality