
Foundations of Artificial Intelligence

T. Keller, F. Pommerening
S. Sievers
Spring Term 2023

University of Basel
Computer Science

Exercise Sheet 11
Due: May 21, 2023

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

Exercise 11.1 (1+1 marks)

Are the following statements about landmarks correct? Justify your answer.

(a) If L is a landmark and a is an action not occuring in L, then L′ = L ∪ {a} is a landmark.

(b) Given a set of landmarks L which are pairwise disjoint (meaning we have Li ∩ Lj = ∅ for
all Li ∈ L and Lj ∈ L with i ̸= j), the sum of the costs of all landmarks is an admissible
heuristic.

Exercise 11.2 (1 mark)

Consider a task with actions A = {a1, a2, a3, a4, a5, a6}, cost function cost = {a1 7→ 3, a2 7→
2, a3 7→ 3, a4 7→ 5, a5 7→ 3, a6 7→ 1} and landmarks L = {L1, L2, L3, L4} with L1 = {a2, a5, a6},
L2 = {a4}, L3 = {a1, a2, a3}, L4 = {a3, a5}}, and initial state I. Compute hMHS(I).

Exercise 11.3 (3 marks)

Consider the delete-free STRIPS planning task Π+ = ⟨V, I,G,A⟩, with variables V = {a, b, c, d, e, i, g},
initial state I = {i}, goal description G = {g}, and actions A = {a1, . . . , a6}, where

pre(a1) = {i} add(a1) = {a, b} cost(a1) = 2

pre(a2) = {i} add(a2) = {c} cost(a2) = 1

pre(a3) = {a, b} add(a3) = {c, d} cost(a3) = 3

pre(a4) = {c} add(a4) = {b, e} cost(a4) = 2

pre(a5) = {c, e} add(a5) = {d} cost(a5) = 4

pre(a6) = {d, e} add(a6) = {g} cost(a6) = 0.

Compute hLM-cut(I) and provide all intermediate results in the same way they were given in the
example of the lecture. Specifically, provide for each iteration (except the last):

• the justification graph with hmax annotations and marked goal zone

• the cut

• the cost of the cut

• the updated action costs

In cases where the precondition choice function is not deterministic, choose the precondition in
alphabetical order.

Exercise 11.4 (2 marks)

Consider the following state in a (small-scale) chess game where white is to move:



4 0Zka
3 Z0o0
2 bZPO
1 SKZ0

a b c d

White started on row 1, so its pawns can only move upwards, and vice versa for black. Besides
the movements rules for figures in chess (see, e.g., https://en.wikipedia.org/wiki/Rules_of_
chess), it is important to know that players are not allowed to make a move that would put
themselves into check. That is, in the above state, white cannot ignore the check position it is in
due to the bishop on a2.
Draw the game tree of the chess game rooted at this state up to depth 2, with MAX being the
white player and MIN the black player. To assign a utility to leaf nodes, use the evaluation
function shown in the lecture wich assigns a value to each type of piece (pawn 1, knight 3, bishop
3, rook 5, queen 9) and computes the sum over all pieces on the board, using a positive sign for
pieces of MAX and negative sign for those of MIN. Your nodes should contain a representation of
the game state.

Exercise 11.5 (2 marks)

Consider the following game tree T :

MAX

MIN

MAX

MIN

MAX

5 4 6 7 4 5 3 9 8 9 6 2 4 8 3 8 7 5

Use the minimax algorithm to annotate T . According to the values computed by the minimax
algorithm, what is the playout if both players play optimally? Mark it in the annotated tree.

Submission rules:

• Exercise sheets must be submitted in groups of two students. Please submit a single copy
of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).



• For programming exercises, only create those code textfiles required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and
the code textfile(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly.

• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.


