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Exercise 10.1 (1.5+1.5 marks)

Consider the 8-Puzzle. We use (x, y) to denote the cell at coordinates (x, y), where x is the
horizontal component and y the vertical component. Cell (0, 0) is in the upper left corner (which
allows us to specify the goal more naturally). Let C = {1, 2, 3}×{1, 2, 3} denote the set of all cells,
and let T = {1, . . . , 8} denote the set of all tiles. We encode the 8-Puzzle as a STRIPS planning
task Π = ⟨V, I,G,A⟩ with the following components:

• V = {tile-at-cellt,c | t ∈ T, c ∈ C} ∪ {cell-emptyc | c ∈ C}
(We do not represent the blank explicitly.)

• I is an arbitrary legal state, where a state is legal if

– each tile is at exactly one position and no two tiles are at the same position (for each
t ∈ T , tile-at-cellt,c is true for exactly one c ∈ C and tile-at-cellt,c is not true for two
different t and the same c), and

– there is exactly one empty position and a cell is empty iff no tile is at that cell
(cell-emptyc is true for only one c ∈ C and tile-at-cellt,c has to be false for all t ∈ T for
that particular c).

• G = {tile-at-cell1,(1,1), tile-at-cell2,(2,1), tile-at-cell3,(3,1), tile-at-cell4,(1,2), tile-at-cell5,(2,2),
tile-at-cell6,(3,2), tile-at-cell7,(1,3), tile-at-cell8,(2,3)}

• A = {movet,c,c′ | t ∈ T, c ∈ C, c′ ∈ neighbors(c)} with

neighbors((x, y)) = {(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1)} ∩ C

and

pre(movet,c,c′) = {tile-at-cellt,c, cell-emptyc′}
add(movet,c,c′) = {tile-at-cellt,c′ , cell-emptyc}
del(movet,c,c′) = {tile-at-cellt,c, cell-emptyc′}
cost(movet,c,c′) = 1

for all movet,c,c′ ∈ A.

We define theManhattan distance between two cells (i.e., pairs of coordinates) as MD((x, y), (x′, y′)) =
|x−x′|+|y−y′|, i.e., as the length of the shortest “grid path” between the two cells. The Manhattan
distance heuristic hMD(s) is the sum of Manhattan distances of each tile to its goal cell.

(a) Show that h+(s) ≥ hMD(s) for all states s, i.e., h+ dominates the Manhattan distance in
the 8-Puzzle.

(b) Show that there exists a legal state s with h+(s) > hMD(s).



Exercise 10.2 (1+1 marks)

In this exercise, we consider the Sokoban problem. As a reminder, in the Sokoban problem, there is
an agent who can move in a grid of which a subset of cells is blocked by walls. In the general form
of the problem (see, e.g., https://en.wikipedia.org/wiki/Sokoban), there is a set of boxes,
located at their initial cells in the grid, that must be pushed to goal cells in the grid. The agent
can freely move to any cell not occupied by a wall or a box. The agent can only push boxes:
if they stand next to a box and the cell behind the box from the point of view of the agent is
unoccupied, they can push the box to that free cell, which also moves the agent to the cell the
box was previously. The objective is to get the boxes to the goals with as few pushes as possible.
The number of moves of the agent do not matter.
Consider the following scalable (for n ∈ N) familiy of Sokoban problems where a represents the
initial position of the agent, b1, b2 and b3 the initial position of three boxes and g1, g2 and g3 three
goal positions for the boxes. There are no walls/no occupied cells on the grid (but around it, not
shown).
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Assume a STRIPS encoding that uses five variables for each cell of the grid. One variable encodes
if the agent is at the cell or not, three variables, one for each box, encode if the box is at the cell or
not, and the fifth variable encodes whether the cell is free or not. Additionally, there is a variable
for each box encoding if it is at a/its goal positions, depending on the variant used (different in
parts (a) and (b)). These variables have to be true in the goal. The cost of push actions is 1, that
of move actions is 0. Let s0 denote the initial state.

(a) Consider the variant of Sokoban where each box has a designated goal location, and assume
that the goal location of box bi is gi for i = 1, 2, 3. Provide h∗(s0) and h+(s0) as a function
of n. Justify your answer, e.g., by describing optimal (relaxed) plans. Discuss the ratio of
h+(s0) to h∗(s0) for increasing n.

(b) Consider the general version of Sokoban where each box can be pushed to any empty goal
location. Provide h+(s0) and h∗(s0) as a function of n (you do not have to consider the case
where n < 7). Justify your answer. Discuss the ratio of h+(s0) and h∗(s0) for increasing n.

Exercise 10.3 (1+0.5+0.5+0.5 marks)

Consider the STRIPS planning task Π = ⟨V, I,G,A⟩ with V = {a, b, c, d, e, f}, I = {a}, G =



{d, f}, and A = {a1, a2, a3, a4, a5} with cost = {a1 7→ 2, a2 7→ 4, a3 7→ 1, a4 7→ 1, a5 7→ 1} and

pre(a1) = {a} add(a1) = {b, c} del(a1) = {}
pre(a2) = {a} add(a2) = {c, d} del(a2) = {}
pre(a3) = {b, c} add(a3) = {d} del(a3) = {c}
pre(a4) = {c} add(a4) = {e} del(a4) = {c}
pre(a5) = {e} add(a5) = {f} del(a5) = {a, b}.

(a) Provide the relaxed planning graph for Π up to depth 4 (i.e., the resulting graph should have
five variable layers and four action layers).

(b) Compute hmax(I). Provide the values for all nodes in the RPG.

(c) Compute hadd(I). Provide the values for all nodes in the RPG.

(d) Compute hFF(I). Provide the marked RPG.

Exercise 10.4 (1+1+0.5 marks)

Consider a planning task where an agent aims to raise a treasure. To do so, the agent must collect
a key and use it to open the chest that contains the treasure. Initially, he is located at position
T (top), the key is at position M (middle), and the treasure at position B (bottom). The task is
defined in SAS+ as follows. Π = ⟨V, I,G,A⟩, where

• V = {location, key, treasure-chest} is the set of variables with dom(location) = {T,M,B},
dom(key) = {Y,N}, and dom(treasure-chest) = {O,C};
(Y and N stand for yes and no; O and C for the treasure chest being open or closed.)

• I = {location 7→ T, key 7→ N, treasure-chest 7→ C} is the initial state;

• G = {treasure-chest 7→ O} is the goal;

• T = {moveT,M ,moveM,T ,moveM,B ,moveB,M , pick-up, open} is the set of actions with

pre(moveT,M ) = {location 7→ T} eff(moveT,M ) = {location 7→ M} cost(moveT,M ) = 3

pre(moveM,T ) = {location 7→ M} eff(moveM,T ) = {location 7→ T} cost(moveM,T ) = 3

pre(moveM,B) = {location 7→ M} eff(moveM,B) = {location 7→ B} cost(moveM,B) = 3

pre(moveB,M ) = {location 7→ B} eff(moveB,M ) = {location 7→ M} cost(moveB,M ) = 3

pre(pick-up) = {location 7→ M, eff(pick-up) = {key 7→ Y } cost(pick-up) = 1

key 7→ N}
pre(open) = {location 7→ B, eff(open) = {treasure-chest 7→ O} cost(open) = 2

key 7→ Y,

treasure-chest 7→ C}

(a) Draw the state space, i.e., all states, labeled transitions, and mark the initial state and the
goal states. The state space consists of 12 states, some of which are not reachable from the
initial state. Label each state {location 7→ x, key 7→ y, treasure-chest 7→ z} with xyz. You
may abbreviate action names.

(b) Draw the abstract state space that is induced by the projection πP on P = {location, treasure-chest}.
Use the same way as in part (a), i.e., write xy for an abstract state {location 7→ x, treasure-chest 7→
y}.



(c) Use the abstraction from part (b) to derive a pattern database (PDB) heuristic hP . To do
so, provide the heuristic function hP for all concrete states, i.e., the perfect heuristic value
of the abstract state the concret state is mapped to.
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of the exercises per group (only one member of the group does the submission).
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