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Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

Note: due to the holiday on May 1, this exercise sheet covers only one lecture day and therefore
contains exercises worth only 5 marks.

Exercise 9.1 (1.5+0.5+1 marks)

In this exercise we consider a PDDL representation of the Sokoban problem. As a reminder, in the
Sokoban problem, there is an agent who can move in a grid of which a subset of cells is blocked by
walls. In the general form of the problem (see, e.g., https://en.wikipedia.org/wiki/Sokoban),
there is a set of boxes, located at their initial cells in the grid, that must be pushed to goal cells
in the grid. The agent can freely move to any cell not occupied by a wall or a box. The agent can
only push boxes: if they stand next to a box and the cell behind the box from the point of view
of the agent is unoccupied, they can push the box to that free cell, which also moves the agent to
the cell the box was previously. The objective is to get the boxes to the goals with as few pushes
as possible. The number of moves of the agent do not matter.
The provided file pddl.zip contains an incomplete PDDL description of the Sokoban domain
and two problem instances. In particular, the domain file sokoban-domain.pddl describes the
variables (called predicates) and actions of Sokoban, both independent of the concrete problem
instances, while the concrete problem instances are described in sokoban-problem-01.pddl (in-
complete) and sokoban-problem-02.pddl (complete example problem). The problem instances
contain a graphical representation at the top. Empty squares represent locations that can be
entered, a ’#’ sign represents a wall, the ’@’ sign represents the initial location of the agent, a ’$’
sign represents an initial position of a box, and a ’.’ sign represents a goal location. Cell 1/1 is in
the upper left corner, where x/y denotes the horizontal and vertical coordinates.
It might also be helpful to consider the example PDDL representation of blocks world, which can
be found on the course website under “Supplementary Material” chapter 34.

(a) Fill the marked gaps in the file sokoban-domain.pddl. The two PDDL actions for pushing
a box must be such that one can be used only to push a box to a goal location, and the
other one only to push a box to a non-goal location.

(b) Fill the marked gaps in the file sokoban-problem-01.pddl.

(c) Obtain the domain-independent planning system Fast Downward. You can download either
the sources or one of various container files from

http://www.fast-downward.org/Releases/22.12

The page also provides links to instructions for compilation and container usage. If you
encounter technical problems, please let us know sufficiently ahead of the due date.

Use Fast Downward with a configuration that performs A⋆ with the delete relaxation heuris-
tic hmax to test your solution of parts (a) and (b). To do so, invoke the planner with

./fast-downward.py DOMAIN PROBLEM --search "astar(hmax())",

where DOMAIN and PROBLEM refer to paths to the PDDL domain and problem files,
respectively.



The plan found by Fast Downward should consist of 35 actions and incur a total cost of 9.

Apply greedy best-first search with the delete relaxation heuristic FF to solve both problem
instances by executing

./fast-downward.py DOMAIN PROBLEM --search "eager greedy([ff()])"

and report the runtime, the number of expanded states and the cost of the plan that was
found.

Exercise 9.2 (2 marks)

In the Gripper planning domain, there is a robot with a gripper and two balls. The robot and the
balls are initially located in the left room, and the goal is to have the balls in the right room. To
achieve this, the robot can move between the two rooms and it can carry a ball using its gripper.
The gripper can only carry a single ball at a time. It can pick up a ball in a room if both the
robot and the ball are in the same room. It can drop the ball it carries in any of the two rooms.
All actions are of equal cost 1.
Formalize the Gripper domain as a STRIPS planning task.
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