
Foundations of Artificial Intelligence

M. Helmert
S. Sievers
Spring Term 2023

University of Basel
Computer Science

Exercise Sheet 4
Due: March 26, 2023

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

Exercise 4.1 (1+1 marks)

Consider the “missionaries and cannibals” problem from the lecture. As a quick reminder: states
in this problem are triples ⟨m, c, b⟩ ∈ {0, 1, 2, 3}×{0, 1, 2, 3}×{0, 1}, where m gives the number of
missionaries, c the number of cannibals and b the number of boats that are at the left river bank
in the given state. Keep in mind that the boat can carry no more than two persons.
Let the initial state be ⟨3, 3, 1⟩ and the goal states be {⟨0, 0, 0⟩, ⟨0, 0, 1⟩}.

(a) Apply depth-bounded tree search with a depth bound of 2 to the initial state (i.e., simulate a
call to depth bounded search(⟨3, 3, 1⟩, 2)). Successor nodes are generated by applying the
following actions in order, ignoring the ones that are inapplicable in a given state: transport
2 missionaries, transport 1 missionary, transport 1 missionary and 1 cannibal, transport 1
cannibal, transport 2 cannibals. Make sure to ignore illegal states, i.e., states where cannibals
outnumber missionaries on either river bank.

Specify the algorithm execution by providing, in a nested manner, with which arguments
the function was called and what was returned. The structure should look like this:
depth bounded search(⟨3, 3, 1⟩, 2)

depth bounded search(. . . , 1)
further call or return

etc.

return none/solution

(b) What is the result of applying depth-first search (without depth bound) to this problem?
Justify your answer.

Exercise 4.2 (1+1 marks)

Which of the search algorithms shown in slide 52 of the printout version of chapter 12 would you
use to find optimal solutions for the following problems? For breadth-first and uniform cost also
consider whether to use the tree or graph variant. Justify your answer in one to two sentences.

(a) Brute-forcing a password of unknown length, where each action (with cost 1) consists of
adding a character to the string and the goal is reached as soon as we have the correct string
(no enter key needed).

(b) route planning (as in finding the shortest path on a map)

Exercise 4.3 (2 marks)

We consider the Sokoban variant defined in Exercise 2.3., i.e., with costs of move actions equal 0 and
costs of push actions equal 1. However, we do not stick with the particular instance shown there
but consider a general problem on a grid of size x× y and with n boxes. In this problem, a state
is defined as a tuple ⟨a, b1, . . . , bn⟩ denoting the position a of the agent and the positions bi of the
n boxes. Recall that a position is a cell ci,j with coordinates (i, j) in the x× y grid. Further recall

that each box has its own goal position. Therefore, we can define a general goal condition through
a tuple ⟨b⋆1, . . . , b⋆n⟩ and the set of goal states as S⋆ = {⟨a, b1, · · · bn⟩ ∈ S | bi = b⋆i for all 1 ≤ i ≤ n}.

Consider the heuristic h, defined as follows for some state s = ⟨a, b1, . . . , bn⟩:

h(s) =

n∑
i=1

mh(bi, b
⋆
i)

where theManhattan distance between two cells (i.e., pairs of coordinates) is defined as mh(ci,j , ci′,j′)) =
|i− i′|+ |j − j′|. In words, the heuristic computes the sum of the shortest “grid paths” (ignoring
walls) of each box.

Formally prove that h is safe, goal-aware, admissible and consistent.

Hint: You may use results from the lecture slides. You may also use the fact that mh(c, x) −
mh(c′, x) ≤ 1 if mh(c, c′) = 1.

Exercise 4.4 (2 marks)

For the state space depicted below with uniform action costs of 1, define a heuristic that is
consistent, not safe and has a perfect estimate for s0 (i.e., h(s0) = h∗(s0)). Justify your answer
by showing why the heuristic is consistent and not safe.
Hint: If a consistent heuristic assigns ∞ to a state, all its successors must be assigned ∞ as well.

s0

s1

s2

s3s4

s5

a1 a2

a3a4

a5

a6

a7 a8

Exercise 4.5 (1+1 marks)

Execute

(a) A∗ (f(n) = g(n) + h(n.state)) and

(b) greedy best-first search (f(n) = h(n.state))

without reopening in the state space depicted below. As heuristic, use the perfect heuristic h∗.
Describe the execution of both search algorithms with the following schema:

1. expanding s10: open = ⟨s11(f = 5), s12(f = 6)⟩, closed = {s10(g = 0)}

2. expanding s11: open = ⟨s13(f = 4), s12(f = 6), s16(f = 10)⟩, closed = {s10(g = 0), s11(g = 3)}

. . .

i. expanding si: found goal with cost x

Note: The schema above uses made up states and numbers that don’t correspond to the given state
space.

s0

s1

s2

s3
sg1

5

10
1

1

Submission rules:

• Exercise sheets must be submitted in groups of two students. Please submit a single copy
of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).

• For programming exercises, only create those code textfiles required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and
the code textfile(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly.

• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.

